Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data

A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called "universal triangle" concept that rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2011-09, Vol.49 (9), p.3156-3166
Hauptverfasser: Piles, M., Camps, A., Vall-llossera, M., Corbella, I., Panciera, R., Rudiger, C., Kerr, Y. H., Walker, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3166
container_issue 9
container_start_page 3156
container_title IEEE transactions on geoscience and remote sensing
container_volume 49
creator Piles, M.
Camps, A.
Vall-llossera, M.
Corbella, I.
Panciera, R.
Rudiger, C.
Kerr, Y. H.
Walker, J.
description A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called "universal triangle" concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature ( T s ), to the soil moisture status. It combines the accuracy of SMOS observations with the high spatial resolution of VIS/IR satellite data into accurate soil moisture estimates at high spatial resolution. In preparation for the SMOS launch, the algorithm was tested using observations of the UPC Airborne RadIomEter at L-band (ARIEL) over the Soil Moisture Measurement Network of the University of Salamanca (REMEDHUS) in Zamora (Spain), and LANDSAT imagery. Results showed fairly good agreement with ground-based soil moisture measurements and illustrated the strength of the link between VIS/IR satellite data and soil moisture status. Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed. The method has been applied to some of the first SMOS images acquired during the commissioning phase and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Results show that the soil moisture variability is effectively captured at 10 and 1 km spatial scales without a significant degradation of the root mean square error.
doi_str_mv 10.1109/TGRS.2011.2120615
format Article
fullrecord <record><control><sourceid>csuc_RIE</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_184240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5756664</ieee_id><sourcerecordid>oai_recercat_cat_2072_184240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-fc9c2db65d6d604e92f7ee94902c145fabbf3951fe77daeda39c74129e1b61c63</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFZ_gHjJxWPanc1mkz1Ko22hpWBar8tmM5GVmJTdVPHfm9DSHoZhmPedj4eQR6ATACqn2_l7PmEUYMKAUQHxFRlBHKchFZxfkxEFKUKWSnZL7rz_ohR4DMmILLL2t_FG17b5DPL1Jg8zdPYHyyBvbR2sW-u7g8Ng5wfBepMt8-DDelvUOF02ldOul2a60_fkptK1x4dTHpPd2-t2tghXm_ly9rIKDadRF1ZGGlYWIi5FKShHyaoEUXJJmelPqnRRVJGMocIkKTWWOpIm4cAkQiHAiGhM4DjX-INRDg06ozvVansphmA0YQpSzvq1F49rvXdYqb2z39r9KaBqwKcGfGrAp074es_z0bPXA57-08ZYfzYyzpMoSmWvezrqLCKe23ESCyF49A-QQHf0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data</title><source>IEEE Electronic Library (IEL)</source><creator>Piles, M. ; Camps, A. ; Vall-llossera, M. ; Corbella, I. ; Panciera, R. ; Rudiger, C. ; Kerr, Y. H. ; Walker, J.</creator><creatorcontrib>Piles, M. ; Camps, A. ; Vall-llossera, M. ; Corbella, I. ; Panciera, R. ; Rudiger, C. ; Kerr, Y. H. ; Walker, J.</creatorcontrib><description>A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called "universal triangle" concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature ( T s ), to the soil moisture status. It combines the accuracy of SMOS observations with the high spatial resolution of VIS/IR satellite data into accurate soil moisture estimates at high spatial resolution. In preparation for the SMOS launch, the algorithm was tested using observations of the UPC Airborne RadIomEter at L-band (ARIEL) over the Soil Moisture Measurement Network of the University of Salamanca (REMEDHUS) in Zamora (Spain), and LANDSAT imagery. Results showed fairly good agreement with ground-based soil moisture measurements and illustrated the strength of the link between VIS/IR satellite data and soil moisture status. Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed. The method has been applied to some of the first SMOS images acquired during the commissioning phase and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Results show that the soil moisture variability is effectively captured at 10 and 1 km spatial scales without a significant degradation of the root mean square error.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2011.2120615</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Downscaling algorithm ; Earth sciences ; Earth, ocean, space ; Enginyeria de la telecomunicació ; Exact sciences and technology ; Internal geophysics ; Joining processes ; Mesurament ; Microones ; Microwave measurements ; MODIS ; passive microwave remote sensing ; Radiocomunicació i exploració electromagnètica ; Satellites ; Satèl·lits i ràdioenllaços ; Sistemes d'informació geogràfica ; SMOS ; Soil moisture ; Spatial resolution ; Vegetation mapping ; Àrees temàtiques de la UPC</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2011-09, Vol.49 (9), p.3156-3166</ispartof><rights>2015 INIST-CNRS</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-fc9c2db65d6d604e92f7ee94902c145fabbf3951fe77daeda39c74129e1b61c63</citedby><cites>FETCH-LOGICAL-c403t-fc9c2db65d6d604e92f7ee94902c145fabbf3951fe77daeda39c74129e1b61c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5756664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,796,885,23930,23931,25140,26974,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5756664$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24473389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Piles, M.</creatorcontrib><creatorcontrib>Camps, A.</creatorcontrib><creatorcontrib>Vall-llossera, M.</creatorcontrib><creatorcontrib>Corbella, I.</creatorcontrib><creatorcontrib>Panciera, R.</creatorcontrib><creatorcontrib>Rudiger, C.</creatorcontrib><creatorcontrib>Kerr, Y. H.</creatorcontrib><creatorcontrib>Walker, J.</creatorcontrib><title>Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called "universal triangle" concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature ( T s ), to the soil moisture status. It combines the accuracy of SMOS observations with the high spatial resolution of VIS/IR satellite data into accurate soil moisture estimates at high spatial resolution. In preparation for the SMOS launch, the algorithm was tested using observations of the UPC Airborne RadIomEter at L-band (ARIEL) over the Soil Moisture Measurement Network of the University of Salamanca (REMEDHUS) in Zamora (Spain), and LANDSAT imagery. Results showed fairly good agreement with ground-based soil moisture measurements and illustrated the strength of the link between VIS/IR satellite data and soil moisture status. Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed. The method has been applied to some of the first SMOS images acquired during the commissioning phase and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Results show that the soil moisture variability is effectively captured at 10 and 1 km spatial scales without a significant degradation of the root mean square error.</description><subject>Applied geophysics</subject><subject>Downscaling algorithm</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Enginyeria de la telecomunicació</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Joining processes</subject><subject>Mesurament</subject><subject>Microones</subject><subject>Microwave measurements</subject><subject>MODIS</subject><subject>passive microwave remote sensing</subject><subject>Radiocomunicació i exploració electromagnètica</subject><subject>Satellites</subject><subject>Satèl·lits i ràdioenllaços</subject><subject>Sistemes d'informació geogràfica</subject><subject>SMOS</subject><subject>Soil moisture</subject><subject>Spatial resolution</subject><subject>Vegetation mapping</subject><subject>Àrees temàtiques de la UPC</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkE1Lw0AQhhdRsFZ_gHjJxWPanc1mkz1Ko22hpWBar8tmM5GVmJTdVPHfm9DSHoZhmPedj4eQR6ATACqn2_l7PmEUYMKAUQHxFRlBHKchFZxfkxEFKUKWSnZL7rz_ohR4DMmILLL2t_FG17b5DPL1Jg8zdPYHyyBvbR2sW-u7g8Ng5wfBepMt8-DDelvUOF02ldOul2a60_fkptK1x4dTHpPd2-t2tghXm_ly9rIKDadRF1ZGGlYWIi5FKShHyaoEUXJJmelPqnRRVJGMocIkKTWWOpIm4cAkQiHAiGhM4DjX-INRDg06ozvVansphmA0YQpSzvq1F49rvXdYqb2z39r9KaBqwKcGfGrAp074es_z0bPXA57-08ZYfzYyzpMoSmWvezrqLCKe23ESCyF49A-QQHf0</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Piles, M.</creator><creator>Camps, A.</creator><creator>Vall-llossera, M.</creator><creator>Corbella, I.</creator><creator>Panciera, R.</creator><creator>Rudiger, C.</creator><creator>Kerr, Y. H.</creator><creator>Walker, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>IEEE Press. Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20110901</creationdate><title>Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data</title><author>Piles, M. ; Camps, A. ; Vall-llossera, M. ; Corbella, I. ; Panciera, R. ; Rudiger, C. ; Kerr, Y. H. ; Walker, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-fc9c2db65d6d604e92f7ee94902c145fabbf3951fe77daeda39c74129e1b61c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied geophysics</topic><topic>Downscaling algorithm</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Enginyeria de la telecomunicació</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Joining processes</topic><topic>Mesurament</topic><topic>Microones</topic><topic>Microwave measurements</topic><topic>MODIS</topic><topic>passive microwave remote sensing</topic><topic>Radiocomunicació i exploració electromagnètica</topic><topic>Satellites</topic><topic>Satèl·lits i ràdioenllaços</topic><topic>Sistemes d'informació geogràfica</topic><topic>SMOS</topic><topic>Soil moisture</topic><topic>Spatial resolution</topic><topic>Vegetation mapping</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piles, M.</creatorcontrib><creatorcontrib>Camps, A.</creatorcontrib><creatorcontrib>Vall-llossera, M.</creatorcontrib><creatorcontrib>Corbella, I.</creatorcontrib><creatorcontrib>Panciera, R.</creatorcontrib><creatorcontrib>Rudiger, C.</creatorcontrib><creatorcontrib>Kerr, Y. H.</creatorcontrib><creatorcontrib>Walker, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piles, M.</au><au>Camps, A.</au><au>Vall-llossera, M.</au><au>Corbella, I.</au><au>Panciera, R.</au><au>Rudiger, C.</au><au>Kerr, Y. H.</au><au>Walker, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>49</volume><issue>9</issue><spage>3156</spage><epage>3166</epage><pages>3156-3166</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called "universal triangle" concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature ( T s ), to the soil moisture status. It combines the accuracy of SMOS observations with the high spatial resolution of VIS/IR satellite data into accurate soil moisture estimates at high spatial resolution. In preparation for the SMOS launch, the algorithm was tested using observations of the UPC Airborne RadIomEter at L-band (ARIEL) over the Soil Moisture Measurement Network of the University of Salamanca (REMEDHUS) in Zamora (Spain), and LANDSAT imagery. Results showed fairly good agreement with ground-based soil moisture measurements and illustrated the strength of the link between VIS/IR satellite data and soil moisture status. Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed. The method has been applied to some of the first SMOS images acquired during the commissioning phase and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Results show that the soil moisture variability is effectively captured at 10 and 1 km spatial scales without a significant degradation of the root mean square error.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2011.2120615</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2011-09, Vol.49 (9), p.3156-3166
issn 0196-2892
1558-0644
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_184240
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Downscaling algorithm
Earth sciences
Earth, ocean, space
Enginyeria de la telecomunicació
Exact sciences and technology
Internal geophysics
Joining processes
Mesurament
Microones
Microwave measurements
MODIS
passive microwave remote sensing
Radiocomunicació i exploració electromagnètica
Satellites
Satèl·lits i ràdioenllaços
Sistemes d'informació geogràfica
SMOS
Soil moisture
Spatial resolution
Vegetation mapping
Àrees temàtiques de la UPC
title Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downscaling%20SMOS-Derived%20Soil%20Moisture%20Using%20MODIS%20Visible/Infrared%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Piles,%20M.&rft.date=2011-09-01&rft.volume=49&rft.issue=9&rft.spage=3156&rft.epage=3166&rft.pages=3156-3166&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2011.2120615&rft_dat=%3Ccsuc_RIE%3Eoai_recercat_cat_2072_184240%3C/csuc_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5756664&rfr_iscdi=true