Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction
Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | cat |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | |
container_volume | 13 |
creator | Delgado Calvo-Flores, Miguel Pegalajar Jiménez, Mª Carmen Pegalajar Cuéllar, Manuel |
description | Theoretical and experimental studies have shown that traditional training
algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last
years, many researchers have put forward different approaches to solve this
problem, most of them being based on heuristic procedures. In this paper,
the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is
compared in the experimental section, in real finantial time series prediction
problems. |
format | Article |
fullrecord | <record><control><sourceid>csuc</sourceid><recordid>TN_cdi_csuc_raco_oai_raco_cat_article_84937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_raco_cat_article_84937</sourcerecordid><originalsourceid>FETCH-csuc_raco_oai_raco_cat_article_849373</originalsourceid><addsrcrecordid>eNqVzEEOAUEQBdBekJjgDrUXCXoYbIU4gP2k9NRIRase1T3E7Y1wAav_8_Pyeyabz20-Xa7sYmDGMfJ5lufFcrGa2czc94_g28RBML0gKbKwXKAOCtVL8MYOPSi5VpUkgVCr3SCUnkGvcQsogE3jO_b5ABaoWVASdyrxjSCSMkVolCp2HzMy_Rp9pPEvh2Zy2J92x6mLrSsVXSgD8rd0ryVqYuepXOcbW9j_9Bu06VTD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</title><source>Alma/SFX Local Collection</source><creator>Delgado Calvo-Flores, Miguel ; Pegalajar Jiménez, Mª Carmen ; Pegalajar Cuéllar, Manuel</creator><creatorcontrib>Delgado Calvo-Flores, Miguel ; Pegalajar Jiménez, Mª Carmen ; Pegalajar Cuéllar, Manuel</creatorcontrib><description>Theoretical and experimental studies have shown that traditional training
algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last
years, many researchers have put forward different approaches to solve this
problem, most of them being based on heuristic procedures. In this paper,
the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is
compared in the experimental section, in real finantial time series prediction
problems.</description><identifier>ISSN: 1134-5632</identifier><identifier>ISSN: 1989-533X</identifier><language>cat</language><publisher>Mathware & soft computing</publisher><creationdate>2008-03</creationdate><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Delgado Calvo-Flores, Miguel</creatorcontrib><creatorcontrib>Pegalajar Jiménez, Mª Carmen</creatorcontrib><creatorcontrib>Pegalajar Cuéllar, Manuel</creatorcontrib><title>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</title><description>Theoretical and experimental studies have shown that traditional training
algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last
years, many researchers have put forward different approaches to solve this
problem, most of them being based on heuristic procedures. In this paper,
the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is
compared in the experimental section, in real finantial time series prediction
problems.</description><issn>1134-5632</issn><issn>1989-533X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>2VB</sourceid><recordid>eNqVzEEOAUEQBdBekJjgDrUXCXoYbIU4gP2k9NRIRase1T3E7Y1wAav_8_Pyeyabz20-Xa7sYmDGMfJ5lufFcrGa2czc94_g28RBML0gKbKwXKAOCtVL8MYOPSi5VpUkgVCr3SCUnkGvcQsogE3jO_b5ABaoWVASdyrxjSCSMkVolCp2HzMy_Rp9pPEvh2Zy2J92x6mLrSsVXSgD8rd0ryVqYuepXOcbW9j_9Bu06VTD</recordid><startdate>20080331</startdate><enddate>20080331</enddate><creator>Delgado Calvo-Flores, Miguel</creator><creator>Pegalajar Jiménez, Mª Carmen</creator><creator>Pegalajar Cuéllar, Manuel</creator><general>Mathware & soft computing</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope></search><sort><creationdate>20080331</creationdate><title>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</title><author>Delgado Calvo-Flores, Miguel ; Pegalajar Jiménez, Mª Carmen ; Pegalajar Cuéllar, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_raco_oai_raco_cat_article_849373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>cat</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado Calvo-Flores, Miguel</creatorcontrib><creatorcontrib>Pegalajar Jiménez, Mª Carmen</creatorcontrib><creatorcontrib>Pegalajar Cuéllar, Manuel</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado Calvo-Flores, Miguel</au><au>Pegalajar Jiménez, Mª Carmen</au><au>Pegalajar Cuéllar, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</atitle><date>2008-03-31</date><risdate>2008</risdate><volume>13</volume><issue>2</issue><issn>1134-5632</issn><issn>1989-533X</issn><abstract>Theoretical and experimental studies have shown that traditional training
algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last
years, many researchers have put forward different approaches to solve this
problem, most of them being based on heuristic procedures. In this paper,
the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is
compared in the experimental section, in real finantial time series prediction
problems.</abstract><pub>Mathware & soft computing</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1134-5632 |
ispartof | |
issn | 1134-5632 1989-533X |
language | cat |
recordid | cdi_csuc_raco_oai_raco_cat_article_84937 |
source | Alma/SFX Local Collection |
title | Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionaty%20training%20for%20dynamical%20recurrent%20neural%20networks:%20an%20application%20in%20finantial%20time%20series%20prediction&rft.au=Delgado%20Calvo-Flores,%20Miguel&rft.date=2008-03-31&rft.volume=13&rft.issue=2&rft.issn=1134-5632&rft_id=info:doi/&rft_dat=%3Ccsuc%3Eoai_raco_cat_article_84937%3C/csuc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |