Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction

Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Delgado Calvo-Flores, Miguel, Pegalajar Jiménez, Mª Carmen, Pegalajar Cuéllar, Manuel
Format: Artikel
Sprache:cat
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title
container_volume 13
creator Delgado Calvo-Flores, Miguel
Pegalajar Jiménez, Mª Carmen
Pegalajar Cuéllar, Manuel
description Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve this problem, most of them being based on heuristic procedures. In this paper, the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is compared in the experimental section, in real finantial time series prediction problems.
format Article
fullrecord <record><control><sourceid>csuc</sourceid><recordid>TN_cdi_csuc_raco_oai_raco_cat_article_84937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_raco_cat_article_84937</sourcerecordid><originalsourceid>FETCH-csuc_raco_oai_raco_cat_article_849373</originalsourceid><addsrcrecordid>eNqVzEEOAUEQBdBekJjgDrUXCXoYbIU4gP2k9NRIRase1T3E7Y1wAav_8_Pyeyabz20-Xa7sYmDGMfJ5lufFcrGa2czc94_g28RBML0gKbKwXKAOCtVL8MYOPSi5VpUkgVCr3SCUnkGvcQsogE3jO_b5ABaoWVASdyrxjSCSMkVolCp2HzMy_Rp9pPEvh2Zy2J92x6mLrSsVXSgD8rd0ryVqYuepXOcbW9j_9Bu06VTD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</title><source>Alma/SFX Local Collection</source><creator>Delgado Calvo-Flores, Miguel ; Pegalajar Jiménez, Mª Carmen ; Pegalajar Cuéllar, Manuel</creator><creatorcontrib>Delgado Calvo-Flores, Miguel ; Pegalajar Jiménez, Mª Carmen ; Pegalajar Cuéllar, Manuel</creatorcontrib><description>Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve this problem, most of them being based on heuristic procedures. In this paper, the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is compared in the experimental section, in real finantial time series prediction problems.</description><identifier>ISSN: 1134-5632</identifier><identifier>ISSN: 1989-533X</identifier><language>cat</language><publisher>Mathware &amp; soft computing</publisher><creationdate>2008-03</creationdate><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Delgado Calvo-Flores, Miguel</creatorcontrib><creatorcontrib>Pegalajar Jiménez, Mª Carmen</creatorcontrib><creatorcontrib>Pegalajar Cuéllar, Manuel</creatorcontrib><title>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</title><description>Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve this problem, most of them being based on heuristic procedures. In this paper, the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is compared in the experimental section, in real finantial time series prediction problems.</description><issn>1134-5632</issn><issn>1989-533X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>2VB</sourceid><recordid>eNqVzEEOAUEQBdBekJjgDrUXCXoYbIU4gP2k9NRIRase1T3E7Y1wAav_8_Pyeyabz20-Xa7sYmDGMfJ5lufFcrGa2czc94_g28RBML0gKbKwXKAOCtVL8MYOPSi5VpUkgVCr3SCUnkGvcQsogE3jO_b5ABaoWVASdyrxjSCSMkVolCp2HzMy_Rp9pPEvh2Zy2J92x6mLrSsVXSgD8rd0ryVqYuepXOcbW9j_9Bu06VTD</recordid><startdate>20080331</startdate><enddate>20080331</enddate><creator>Delgado Calvo-Flores, Miguel</creator><creator>Pegalajar Jiménez, Mª Carmen</creator><creator>Pegalajar Cuéllar, Manuel</creator><general>Mathware &amp; soft computing</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope></search><sort><creationdate>20080331</creationdate><title>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</title><author>Delgado Calvo-Flores, Miguel ; Pegalajar Jiménez, Mª Carmen ; Pegalajar Cuéllar, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_raco_oai_raco_cat_article_849373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>cat</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado Calvo-Flores, Miguel</creatorcontrib><creatorcontrib>Pegalajar Jiménez, Mª Carmen</creatorcontrib><creatorcontrib>Pegalajar Cuéllar, Manuel</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado Calvo-Flores, Miguel</au><au>Pegalajar Jiménez, Mª Carmen</au><au>Pegalajar Cuéllar, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction</atitle><date>2008-03-31</date><risdate>2008</risdate><volume>13</volume><issue>2</issue><issn>1134-5632</issn><issn>1989-533X</issn><abstract>Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve this problem, most of them being based on heuristic procedures. In this paper, the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance of the models considered is compared in the experimental section, in real finantial time series prediction problems.</abstract><pub>Mathware &amp; soft computing</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1134-5632
ispartof
issn 1134-5632
1989-533X
language cat
recordid cdi_csuc_raco_oai_raco_cat_article_84937
source Alma/SFX Local Collection
title Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionaty%20training%20for%20dynamical%20recurrent%20neural%20networks:%20an%20application%20in%20finantial%20time%20series%20prediction&rft.au=Delgado%20Calvo-Flores,%20Miguel&rft.date=2008-03-31&rft.volume=13&rft.issue=2&rft.issn=1134-5632&rft_id=info:doi/&rft_dat=%3Ccsuc%3Eoai_raco_cat_article_84937%3C/csuc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true