Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer
The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle....
Gespeichert in:
Veröffentlicht in: | Keisoku Jidō Seigyo Gakkai ronbunshū 2013, Vol.49(11), pp.1047-1056 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1056 |
---|---|
container_issue | 11 |
container_start_page | 1047 |
container_title | Keisoku Jidō Seigyo Gakkai ronbunshū |
container_volume | 49 |
creator | TANIGUCHI, Tadahiro YAMASHITA, Genki NAGASAKA, Shogo BANDO, Takashi TAKENAKA, Kazuhito HITOMI, Kentarou |
description | The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants. |
doi_str_mv | 10.9746/sicetr.49.1047 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_9746_sicetr_49_1047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_sicetr_49_11_49_1047_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c98n-3751cbaf935a4809e9ac9f45a067cd20bfb60a8654370748a0dcfcb93d9487753</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOHSvPucLtCZN2iSP--NUmAiyR6HcpskW7VJJ2sH89LZMh08H7v2dyz0HoTtKUiV4cR-dNl1IuUop4eICTaiULJFUqks0ITxnCS9yfo2mMbqKkKwQJMvoBL2vnK-d3-IXA35Q2zf4ra362OHFrvefEdvQ7vEyuMNIzc0ODq4NeA7R1Lj1eNn2VWPwLHRO9w10bpjNPDTHbxNu0ZWFJprpr96gzephs3hK1q-Pz4vZOtFK-oSJnOoKrGI5cEmUUaCV5TmQQug6I5WtCgJyeJ8JIrgEUmurK8VqxaUQObtB6emsDm2MwdjyK7g9hGNJSTm2U57aKbkqx3YGw_xk-IgdbM0ZhzFEY_7j9M90XuodhNJ49gP6h3Ks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>TANIGUCHI, Tadahiro ; YAMASHITA, Genki ; NAGASAKA, Shogo ; BANDO, Takashi ; TAKENAKA, Kazuhito ; HITOMI, Kentarou</creator><creatorcontrib>TANIGUCHI, Tadahiro ; YAMASHITA, Genki ; NAGASAKA, Shogo ; BANDO, Takashi ; TAKENAKA, Kazuhito ; HITOMI, Kentarou</creatorcontrib><description>The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants.</description><identifier>ISSN: 0453-4654</identifier><identifier>EISSN: 1883-8189</identifier><identifier>DOI: 10.9746/sicetr.49.1047</identifier><language>eng ; jpn</language><publisher>The Society of Instrument and Control Engineers</publisher><subject>double articulation ; driving behavior ; nested Pitman-Yor language model ; sticky hierarchical Dirichlet process-hidden Markov model ; time-series modelling</subject><ispartof>Transactions of the Society of Instrument and Control Engineers, 2013, Vol.49(11), pp.1047-1056</ispartof><rights>2013 The Society of Instrument and Control Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c98n-3751cbaf935a4809e9ac9f45a067cd20bfb60a8654370748a0dcfcb93d9487753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>TANIGUCHI, Tadahiro</creatorcontrib><creatorcontrib>YAMASHITA, Genki</creatorcontrib><creatorcontrib>NAGASAKA, Shogo</creatorcontrib><creatorcontrib>BANDO, Takashi</creatorcontrib><creatorcontrib>TAKENAKA, Kazuhito</creatorcontrib><creatorcontrib>HITOMI, Kentarou</creatorcontrib><title>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</title><title>Keisoku Jidō Seigyo Gakkai ronbunshū</title><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><description>The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants.</description><subject>double articulation</subject><subject>driving behavior</subject><subject>nested Pitman-Yor language model</subject><subject>sticky hierarchical Dirichlet process-hidden Markov model</subject><subject>time-series modelling</subject><issn>0453-4654</issn><issn>1883-8189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMoOHSvPucLtCZN2iSP--NUmAiyR6HcpskW7VJJ2sH89LZMh08H7v2dyz0HoTtKUiV4cR-dNl1IuUop4eICTaiULJFUqks0ITxnCS9yfo2mMbqKkKwQJMvoBL2vnK-d3-IXA35Q2zf4ra362OHFrvefEdvQ7vEyuMNIzc0ODq4NeA7R1Lj1eNn2VWPwLHRO9w10bpjNPDTHbxNu0ZWFJprpr96gzephs3hK1q-Pz4vZOtFK-oSJnOoKrGI5cEmUUaCV5TmQQug6I5WtCgJyeJ8JIrgEUmurK8VqxaUQObtB6emsDm2MwdjyK7g9hGNJSTm2U57aKbkqx3YGw_xk-IgdbM0ZhzFEY_7j9M90XuodhNJ49gP6h3Ks</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>TANIGUCHI, Tadahiro</creator><creator>YAMASHITA, Genki</creator><creator>NAGASAKA, Shogo</creator><creator>BANDO, Takashi</creator><creator>TAKENAKA, Kazuhito</creator><creator>HITOMI, Kentarou</creator><general>The Society of Instrument and Control Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</title><author>TANIGUCHI, Tadahiro ; YAMASHITA, Genki ; NAGASAKA, Shogo ; BANDO, Takashi ; TAKENAKA, Kazuhito ; HITOMI, Kentarou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c98n-3751cbaf935a4809e9ac9f45a067cd20bfb60a8654370748a0dcfcb93d9487753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2013</creationdate><topic>double articulation</topic><topic>driving behavior</topic><topic>nested Pitman-Yor language model</topic><topic>sticky hierarchical Dirichlet process-hidden Markov model</topic><topic>time-series modelling</topic><toplevel>online_resources</toplevel><creatorcontrib>TANIGUCHI, Tadahiro</creatorcontrib><creatorcontrib>YAMASHITA, Genki</creatorcontrib><creatorcontrib>NAGASAKA, Shogo</creatorcontrib><creatorcontrib>BANDO, Takashi</creatorcontrib><creatorcontrib>TAKENAKA, Kazuhito</creatorcontrib><creatorcontrib>HITOMI, Kentarou</creatorcontrib><collection>CrossRef</collection><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TANIGUCHI, Tadahiro</au><au>YAMASHITA, Genki</au><au>NAGASAKA, Shogo</au><au>BANDO, Takashi</au><au>TAKENAKA, Kazuhito</au><au>HITOMI, Kentarou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</atitle><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><date>2013</date><risdate>2013</risdate><volume>49</volume><issue>11</issue><spage>1047</spage><epage>1056</epage><pages>1047-1056</pages><issn>0453-4654</issn><eissn>1883-8189</eissn><abstract>The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants.</abstract><pub>The Society of Instrument and Control Engineers</pub><doi>10.9746/sicetr.49.1047</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0453-4654 |
ispartof | Transactions of the Society of Instrument and Control Engineers, 2013, Vol.49(11), pp.1047-1056 |
issn | 0453-4654 1883-8189 |
language | eng ; jpn |
recordid | cdi_crossref_primary_10_9746_sicetr_49_1047 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | double articulation driving behavior nested Pitman-Yor language model sticky hierarchical Dirichlet process-hidden Markov model time-series modelling |
title | Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Meaningful%20Robust%20Chunks%20from%20Driving%20Behavior%20Based%20on%20Double%20Articulation%20Analyzer&rft.jtitle=Keisoku%20Jid%C5%8D%20Seigyo%20Gakkai%20ronbunsh%C5%AB&rft.au=TANIGUCHI,%20Tadahiro&rft.date=2013&rft.volume=49&rft.issue=11&rft.spage=1047&rft.epage=1056&rft.pages=1047-1056&rft.issn=0453-4654&rft.eissn=1883-8189&rft_id=info:doi/10.9746/sicetr.49.1047&rft_dat=%3Cjstage_cross%3Earticle_sicetr_49_11_49_1047_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |