Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer

The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Keisoku Jidō Seigyo Gakkai ronbunshū 2013, Vol.49(11), pp.1047-1056
Hauptverfasser: TANIGUCHI, Tadahiro, YAMASHITA, Genki, NAGASAKA, Shogo, BANDO, Takashi, TAKENAKA, Kazuhito, HITOMI, Kentarou
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1056
container_issue 11
container_start_page 1047
container_title Keisoku Jidō Seigyo Gakkai ronbunshū
container_volume 49
creator TANIGUCHI, Tadahiro
YAMASHITA, Genki
NAGASAKA, Shogo
BANDO, Takashi
TAKENAKA, Kazuhito
HITOMI, Kentarou
description The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants.
doi_str_mv 10.9746/sicetr.49.1047
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_9746_sicetr_49_1047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_sicetr_49_11_49_1047_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c98n-3751cbaf935a4809e9ac9f45a067cd20bfb60a8654370748a0dcfcb93d9487753</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOHSvPucLtCZN2iSP--NUmAiyR6HcpskW7VJJ2sH89LZMh08H7v2dyz0HoTtKUiV4cR-dNl1IuUop4eICTaiULJFUqks0ITxnCS9yfo2mMbqKkKwQJMvoBL2vnK-d3-IXA35Q2zf4ra362OHFrvefEdvQ7vEyuMNIzc0ODq4NeA7R1Lj1eNn2VWPwLHRO9w10bpjNPDTHbxNu0ZWFJprpr96gzephs3hK1q-Pz4vZOtFK-oSJnOoKrGI5cEmUUaCV5TmQQug6I5WtCgJyeJ8JIrgEUmurK8VqxaUQObtB6emsDm2MwdjyK7g9hGNJSTm2U57aKbkqx3YGw_xk-IgdbM0ZhzFEY_7j9M90XuodhNJ49gP6h3Ks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>TANIGUCHI, Tadahiro ; YAMASHITA, Genki ; NAGASAKA, Shogo ; BANDO, Takashi ; TAKENAKA, Kazuhito ; HITOMI, Kentarou</creator><creatorcontrib>TANIGUCHI, Tadahiro ; YAMASHITA, Genki ; NAGASAKA, Shogo ; BANDO, Takashi ; TAKENAKA, Kazuhito ; HITOMI, Kentarou</creatorcontrib><description>The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants.</description><identifier>ISSN: 0453-4654</identifier><identifier>EISSN: 1883-8189</identifier><identifier>DOI: 10.9746/sicetr.49.1047</identifier><language>eng ; jpn</language><publisher>The Society of Instrument and Control Engineers</publisher><subject>double articulation ; driving behavior ; nested Pitman-Yor language model ; sticky hierarchical Dirichlet process-hidden Markov model ; time-series modelling</subject><ispartof>Transactions of the Society of Instrument and Control Engineers, 2013, Vol.49(11), pp.1047-1056</ispartof><rights>2013 The Society of Instrument and Control Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c98n-3751cbaf935a4809e9ac9f45a067cd20bfb60a8654370748a0dcfcb93d9487753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>TANIGUCHI, Tadahiro</creatorcontrib><creatorcontrib>YAMASHITA, Genki</creatorcontrib><creatorcontrib>NAGASAKA, Shogo</creatorcontrib><creatorcontrib>BANDO, Takashi</creatorcontrib><creatorcontrib>TAKENAKA, Kazuhito</creatorcontrib><creatorcontrib>HITOMI, Kentarou</creatorcontrib><title>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</title><title>Keisoku Jidō Seigyo Gakkai ronbunshū</title><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><description>The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants.</description><subject>double articulation</subject><subject>driving behavior</subject><subject>nested Pitman-Yor language model</subject><subject>sticky hierarchical Dirichlet process-hidden Markov model</subject><subject>time-series modelling</subject><issn>0453-4654</issn><issn>1883-8189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMoOHSvPucLtCZN2iSP--NUmAiyR6HcpskW7VJJ2sH89LZMh08H7v2dyz0HoTtKUiV4cR-dNl1IuUop4eICTaiULJFUqks0ITxnCS9yfo2mMbqKkKwQJMvoBL2vnK-d3-IXA35Q2zf4ra362OHFrvefEdvQ7vEyuMNIzc0ODq4NeA7R1Lj1eNn2VWPwLHRO9w10bpjNPDTHbxNu0ZWFJprpr96gzephs3hK1q-Pz4vZOtFK-oSJnOoKrGI5cEmUUaCV5TmQQug6I5WtCgJyeJ8JIrgEUmurK8VqxaUQObtB6emsDm2MwdjyK7g9hGNJSTm2U57aKbkqx3YGw_xk-IgdbM0ZhzFEY_7j9M90XuodhNJ49gP6h3Ks</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>TANIGUCHI, Tadahiro</creator><creator>YAMASHITA, Genki</creator><creator>NAGASAKA, Shogo</creator><creator>BANDO, Takashi</creator><creator>TAKENAKA, Kazuhito</creator><creator>HITOMI, Kentarou</creator><general>The Society of Instrument and Control Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</title><author>TANIGUCHI, Tadahiro ; YAMASHITA, Genki ; NAGASAKA, Shogo ; BANDO, Takashi ; TAKENAKA, Kazuhito ; HITOMI, Kentarou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c98n-3751cbaf935a4809e9ac9f45a067cd20bfb60a8654370748a0dcfcb93d9487753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2013</creationdate><topic>double articulation</topic><topic>driving behavior</topic><topic>nested Pitman-Yor language model</topic><topic>sticky hierarchical Dirichlet process-hidden Markov model</topic><topic>time-series modelling</topic><toplevel>online_resources</toplevel><creatorcontrib>TANIGUCHI, Tadahiro</creatorcontrib><creatorcontrib>YAMASHITA, Genki</creatorcontrib><creatorcontrib>NAGASAKA, Shogo</creatorcontrib><creatorcontrib>BANDO, Takashi</creatorcontrib><creatorcontrib>TAKENAKA, Kazuhito</creatorcontrib><creatorcontrib>HITOMI, Kentarou</creatorcontrib><collection>CrossRef</collection><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TANIGUCHI, Tadahiro</au><au>YAMASHITA, Genki</au><au>NAGASAKA, Shogo</au><au>BANDO, Takashi</au><au>TAKENAKA, Kazuhito</au><au>HITOMI, Kentarou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer</atitle><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><date>2013</date><risdate>2013</risdate><volume>49</volume><issue>11</issue><spage>1047</spage><epage>1056</epage><pages>1047-1056</pages><issn>0453-4654</issn><eissn>1883-8189</eissn><abstract>The double articulation analyzer is a machine learning algorithm which can extract double articulation structure from time series data based on nonparametric Bayesian approach. The method was proved to detect intentional changes of a driver from time series data recorded by an instrumented vehicle. In this paper, we segment time series data obtained during a driver drove a car through two types of courses using the double articulation analyzer, and analyze the extracted robust chunks by comparing with tags which were added to the recorded data by human participants.</abstract><pub>The Society of Instrument and Control Engineers</pub><doi>10.9746/sicetr.49.1047</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0453-4654
ispartof Transactions of the Society of Instrument and Control Engineers, 2013, Vol.49(11), pp.1047-1056
issn 0453-4654
1883-8189
language eng ; jpn
recordid cdi_crossref_primary_10_9746_sicetr_49_1047
source EZB-FREE-00999 freely available EZB journals
subjects double articulation
driving behavior
nested Pitman-Yor language model
sticky hierarchical Dirichlet process-hidden Markov model
time-series modelling
title Finding Meaningful Robust Chunks from Driving Behavior Based on Double Articulation Analyzer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Meaningful%20Robust%20Chunks%20from%20Driving%20Behavior%20Based%20on%20Double%20Articulation%20Analyzer&rft.jtitle=Keisoku%20Jid%C5%8D%20Seigyo%20Gakkai%20ronbunsh%C5%AB&rft.au=TANIGUCHI,%20Tadahiro&rft.date=2013&rft.volume=49&rft.issue=11&rft.spage=1047&rft.epage=1056&rft.pages=1047-1056&rft.issn=0453-4654&rft.eissn=1883-8189&rft_id=info:doi/10.9746/sicetr.49.1047&rft_dat=%3Cjstage_cross%3Earticle_sicetr_49_11_49_1047_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true