An Auto-Tuning Controller Using Recursive Fuzzy Reasoning

Fuzzy reasoning is able to utilize human experimental rules for driving numerical results. So, recently, some automatic control systems based on fuzzy reasoning have been developed. But the conventional fuzzy reasoning which is used in control has difficulties for application to parameter estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Keisoku Jidō Seigyo Gakkai ronbunshū 1989/10/30, Vol.25(10), pp.1126-1133
Hauptverfasser: NOMOTO, Kohei, KONDO, Michimasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1133
container_issue 10
container_start_page 1126
container_title Keisoku Jidō Seigyo Gakkai ronbunshū
container_volume 25
creator NOMOTO, Kohei
KONDO, Michimasa
description Fuzzy reasoning is able to utilize human experimental rules for driving numerical results. So, recently, some automatic control systems based on fuzzy reasoning have been developed. But the conventional fuzzy reasoning which is used in control has difficulties for application to parameter estimation. Because it needs inputs which are always meaningful and doesn't have property like convergence. In this paper, we propose recursive fuzzy reasoning. This reasoning inputs phenomena induced by a parameter and estimates the value of the parameter, gradually. This algorithm has a learning membership function which narrows range of the parameter. We have applied the recursive fuzzy reasoning to a PI autotuning controller. Usual controlled systems are so complicated that a skilled human operator's technique is often more desiable than that based on mathematical models. Besides, the auto-tuning is a kind of parameter estimation. So the recursive fuzzy reasoning is suitable for this problem. Furthermore, we use other two new techniques for this application. They are the evaluation of unsatisfaction and the extraction of characteristic parameters. Simulation tests are presented. The recursive fuzzy reasoning automatically tunes control parameters during ordinaly on-line control operation without any special test signal.
doi_str_mv 10.9746/sicetr1965.25.1126
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_9746_sicetr1965_25_1126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_sicetr1965_25_10_25_10_1126_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2026-80a8ff356f0f58082257175509b4a8243f5e2912e7a3dd2ad4d3c827fcc1f97f3</originalsourceid><addsrcrecordid>eNpdj9FKwzAUhoMoOOZewKu-QGdykpMml6M4HQwE2a5DTJPZUVtJWmF7elc2JnhzDufn_w58hDwyOteFkE-pdr6PTEucA84ZA3lDJkwpnium9C2ZUIE8FxLFPZmltKeUAlKUCBOiF222GPou3wxt3e6ysmv72DWNj9k2jcG7d0NM9Y_PlsPxeDjdNnVj9YHcBdskP7vsKdkunzfla75-e1mVi3XugILMFbUqBI4y0ICKKgAsWIFI9YewCgQP6EEz8IXlVQW2EhV3CorgHAu6CHxK4PzXxS6l6IP5jvWXjQfDqBn9zZ-_ATSj_wlanaF96u3OXxEb-9o1_j9CL3Nkrx33aaPxLf8FPaZojw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Auto-Tuning Controller Using Recursive Fuzzy Reasoning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>NOMOTO, Kohei ; KONDO, Michimasa</creator><creatorcontrib>NOMOTO, Kohei ; KONDO, Michimasa</creatorcontrib><description>Fuzzy reasoning is able to utilize human experimental rules for driving numerical results. So, recently, some automatic control systems based on fuzzy reasoning have been developed. But the conventional fuzzy reasoning which is used in control has difficulties for application to parameter estimation. Because it needs inputs which are always meaningful and doesn't have property like convergence. In this paper, we propose recursive fuzzy reasoning. This reasoning inputs phenomena induced by a parameter and estimates the value of the parameter, gradually. This algorithm has a learning membership function which narrows range of the parameter. We have applied the recursive fuzzy reasoning to a PI autotuning controller. Usual controlled systems are so complicated that a skilled human operator's technique is often more desiable than that based on mathematical models. Besides, the auto-tuning is a kind of parameter estimation. So the recursive fuzzy reasoning is suitable for this problem. Furthermore, we use other two new techniques for this application. They are the evaluation of unsatisfaction and the extraction of characteristic parameters. Simulation tests are presented. The recursive fuzzy reasoning automatically tunes control parameters during ordinaly on-line control operation without any special test signal.</description><identifier>ISSN: 0453-4654</identifier><identifier>EISSN: 1883-8189</identifier><identifier>DOI: 10.9746/sicetr1965.25.1126</identifier><language>eng</language><publisher>The Society of Instrument and Control Engineers</publisher><subject>autotuning control ; fuzzy control ; parameter estimation ; PID control ; recursive fuzzy reasoning</subject><ispartof>Transactions of the Society of Instrument and Control Engineers, 1989/10/30, Vol.25(10), pp.1126-1133</ispartof><rights>The Society of Instrument and Control Engineers (SICE)</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2026-80a8ff356f0f58082257175509b4a8243f5e2912e7a3dd2ad4d3c827fcc1f97f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>NOMOTO, Kohei</creatorcontrib><creatorcontrib>KONDO, Michimasa</creatorcontrib><title>An Auto-Tuning Controller Using Recursive Fuzzy Reasoning</title><title>Keisoku Jidō Seigyo Gakkai ronbunshū</title><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><description>Fuzzy reasoning is able to utilize human experimental rules for driving numerical results. So, recently, some automatic control systems based on fuzzy reasoning have been developed. But the conventional fuzzy reasoning which is used in control has difficulties for application to parameter estimation. Because it needs inputs which are always meaningful and doesn't have property like convergence. In this paper, we propose recursive fuzzy reasoning. This reasoning inputs phenomena induced by a parameter and estimates the value of the parameter, gradually. This algorithm has a learning membership function which narrows range of the parameter. We have applied the recursive fuzzy reasoning to a PI autotuning controller. Usual controlled systems are so complicated that a skilled human operator's technique is often more desiable than that based on mathematical models. Besides, the auto-tuning is a kind of parameter estimation. So the recursive fuzzy reasoning is suitable for this problem. Furthermore, we use other two new techniques for this application. They are the evaluation of unsatisfaction and the extraction of characteristic parameters. Simulation tests are presented. The recursive fuzzy reasoning automatically tunes control parameters during ordinaly on-line control operation without any special test signal.</description><subject>autotuning control</subject><subject>fuzzy control</subject><subject>parameter estimation</subject><subject>PID control</subject><subject>recursive fuzzy reasoning</subject><issn>0453-4654</issn><issn>1883-8189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNpdj9FKwzAUhoMoOOZewKu-QGdykpMml6M4HQwE2a5DTJPZUVtJWmF7elc2JnhzDufn_w58hDwyOteFkE-pdr6PTEucA84ZA3lDJkwpnium9C2ZUIE8FxLFPZmltKeUAlKUCBOiF222GPou3wxt3e6ysmv72DWNj9k2jcG7d0NM9Y_PlsPxeDjdNnVj9YHcBdskP7vsKdkunzfla75-e1mVi3XugILMFbUqBI4y0ICKKgAsWIFI9YewCgQP6EEz8IXlVQW2EhV3CorgHAu6CHxK4PzXxS6l6IP5jvWXjQfDqBn9zZ-_ATSj_wlanaF96u3OXxEb-9o1_j9CL3Nkrx33aaPxLf8FPaZojw</recordid><startdate>19891030</startdate><enddate>19891030</enddate><creator>NOMOTO, Kohei</creator><creator>KONDO, Michimasa</creator><general>The Society of Instrument and Control Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19891030</creationdate><title>An Auto-Tuning Controller Using Recursive Fuzzy Reasoning</title><author>NOMOTO, Kohei ; KONDO, Michimasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2026-80a8ff356f0f58082257175509b4a8243f5e2912e7a3dd2ad4d3c827fcc1f97f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>autotuning control</topic><topic>fuzzy control</topic><topic>parameter estimation</topic><topic>PID control</topic><topic>recursive fuzzy reasoning</topic><toplevel>online_resources</toplevel><creatorcontrib>NOMOTO, Kohei</creatorcontrib><creatorcontrib>KONDO, Michimasa</creatorcontrib><collection>CrossRef</collection><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NOMOTO, Kohei</au><au>KONDO, Michimasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Auto-Tuning Controller Using Recursive Fuzzy Reasoning</atitle><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><date>1989-10-30</date><risdate>1989</risdate><volume>25</volume><issue>10</issue><spage>1126</spage><epage>1133</epage><pages>1126-1133</pages><issn>0453-4654</issn><eissn>1883-8189</eissn><abstract>Fuzzy reasoning is able to utilize human experimental rules for driving numerical results. So, recently, some automatic control systems based on fuzzy reasoning have been developed. But the conventional fuzzy reasoning which is used in control has difficulties for application to parameter estimation. Because it needs inputs which are always meaningful and doesn't have property like convergence. In this paper, we propose recursive fuzzy reasoning. This reasoning inputs phenomena induced by a parameter and estimates the value of the parameter, gradually. This algorithm has a learning membership function which narrows range of the parameter. We have applied the recursive fuzzy reasoning to a PI autotuning controller. Usual controlled systems are so complicated that a skilled human operator's technique is often more desiable than that based on mathematical models. Besides, the auto-tuning is a kind of parameter estimation. So the recursive fuzzy reasoning is suitable for this problem. Furthermore, we use other two new techniques for this application. They are the evaluation of unsatisfaction and the extraction of characteristic parameters. Simulation tests are presented. The recursive fuzzy reasoning automatically tunes control parameters during ordinaly on-line control operation without any special test signal.</abstract><pub>The Society of Instrument and Control Engineers</pub><doi>10.9746/sicetr1965.25.1126</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0453-4654
ispartof Transactions of the Society of Instrument and Control Engineers, 1989/10/30, Vol.25(10), pp.1126-1133
issn 0453-4654
1883-8189
language eng
recordid cdi_crossref_primary_10_9746_sicetr1965_25_1126
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects autotuning control
fuzzy control
parameter estimation
PID control
recursive fuzzy reasoning
title An Auto-Tuning Controller Using Recursive Fuzzy Reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Auto-Tuning%20Controller%20Using%20Recursive%20Fuzzy%20Reasoning&rft.jtitle=Keisoku%20Jid%C5%8D%20Seigyo%20Gakkai%20ronbunsh%C5%AB&rft.au=NOMOTO,%20Kohei&rft.date=1989-10-30&rft.volume=25&rft.issue=10&rft.spage=1126&rft.epage=1133&rft.pages=1126-1133&rft.issn=0453-4654&rft.eissn=1883-8189&rft_id=info:doi/10.9746/sicetr1965.25.1126&rft_dat=%3Cjstage_cross%3Earticle_sicetr1965_25_10_25_10_1126_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true