A Learning Control System Using Statistical Decision Method

This paper deals with a learning mechanism which uses the statistical decision method. It discusses in detail the minimax decision function which is usually effective when the control experience is limited. It deduces the necessary condition for the minimax decision function in the light of the theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Keisoku Jidō Seigyo Gakkai ronbunshū 1975/06/30, Vol.11(3), pp.289-295
Hauptverfasser: EIHO, Shigeru, KONDO, Bunji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 3
container_start_page 289
container_title Keisoku Jidō Seigyo Gakkai ronbunshū
container_volume 11
creator EIHO, Shigeru
KONDO, Bunji
description This paper deals with a learning mechanism which uses the statistical decision method. It discusses in detail the minimax decision function which is usually effective when the control experience is limited. It deduces the necessary condition for the minimax decision function in the light of the theory of games. It also shows that the optimal minimax decision function is obtainable by the linear programming method. The paper goes on touch on the learning ability of the optimal minimax decision function. It suggests the relaxed minimax decision function obtained by relaxing the condition for the minimax decision function. The function thus obtained is suggested for use where the optimal minimax decision function lacks some learning ability. The relaxed minimax decision function, the paper tells us, does the same work that the minimax decision function does where the control experience is limited. As the control experience increases, the function can do the same work that the empirical Bayes decision function does.
doi_str_mv 10.9746/sicetr1965.11.289
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_9746_sicetr1965_11_289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_sicetr1965_11_3_11_3_289_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1489-bdeaca3a2465227728154b3908253da429cb50290d0888926336ac2bc0d578423</originalsourceid><addsrcrecordid>eNpdkMFqwzAMhs3YYKXrA-yWF0hmy3Zis1PJ1nXQsUPXs1Ect3VJk2H70rdfSkcHu0gg_k9IHyGPjBa6EuVT9NalwHQpC8YKUPqGTJhSPFdM6VsyoULyXJRS3JNZjAdKKUgqSwkT8jzPVg5D7_tdVg99CkOXrU8xuWO2iefhOmHyMXmLXfbirI9-6LMPl_ZD-0DutthFN_vtU7JZvH7Vy3z1-fZez1e5ZULpvGkdWuQI4wUAVQWKSdFwTRVI3qIAbRtJQdOWKqU0lJyXaKGxtJWVEsCnhF322jDEGNzWfAd_xHAyjJqzAPMnwDBmRgEjs7gwh5hw564EhvGVzv0j-KWM4DVg9xiM6_kPxnJnTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Learning Control System Using Statistical Decision Method</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>EIHO, Shigeru ; KONDO, Bunji</creator><creatorcontrib>EIHO, Shigeru ; KONDO, Bunji</creatorcontrib><description>This paper deals with a learning mechanism which uses the statistical decision method. It discusses in detail the minimax decision function which is usually effective when the control experience is limited. It deduces the necessary condition for the minimax decision function in the light of the theory of games. It also shows that the optimal minimax decision function is obtainable by the linear programming method. The paper goes on touch on the learning ability of the optimal minimax decision function. It suggests the relaxed minimax decision function obtained by relaxing the condition for the minimax decision function. The function thus obtained is suggested for use where the optimal minimax decision function lacks some learning ability. The relaxed minimax decision function, the paper tells us, does the same work that the minimax decision function does where the control experience is limited. As the control experience increases, the function can do the same work that the empirical Bayes decision function does.</description><identifier>ISSN: 0453-4654</identifier><identifier>EISSN: 1883-8189</identifier><identifier>DOI: 10.9746/sicetr1965.11.289</identifier><language>eng</language><publisher>The Society of Instrument and Control Engineers</publisher><ispartof>Transactions of the Society of Instrument and Control Engineers, 1975/06/30, Vol.11(3), pp.289-295</ispartof><rights>The Society of Instrument and Control Engineers (SICE)</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>EIHO, Shigeru</creatorcontrib><creatorcontrib>KONDO, Bunji</creatorcontrib><title>A Learning Control System Using Statistical Decision Method</title><title>Keisoku Jidō Seigyo Gakkai ronbunshū</title><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><description>This paper deals with a learning mechanism which uses the statistical decision method. It discusses in detail the minimax decision function which is usually effective when the control experience is limited. It deduces the necessary condition for the minimax decision function in the light of the theory of games. It also shows that the optimal minimax decision function is obtainable by the linear programming method. The paper goes on touch on the learning ability of the optimal minimax decision function. It suggests the relaxed minimax decision function obtained by relaxing the condition for the minimax decision function. The function thus obtained is suggested for use where the optimal minimax decision function lacks some learning ability. The relaxed minimax decision function, the paper tells us, does the same work that the minimax decision function does where the control experience is limited. As the control experience increases, the function can do the same work that the empirical Bayes decision function does.</description><issn>0453-4654</issn><issn>1883-8189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNpdkMFqwzAMhs3YYKXrA-yWF0hmy3Zis1PJ1nXQsUPXs1Ect3VJk2H70rdfSkcHu0gg_k9IHyGPjBa6EuVT9NalwHQpC8YKUPqGTJhSPFdM6VsyoULyXJRS3JNZjAdKKUgqSwkT8jzPVg5D7_tdVg99CkOXrU8xuWO2iefhOmHyMXmLXfbirI9-6LMPl_ZD-0DutthFN_vtU7JZvH7Vy3z1-fZez1e5ZULpvGkdWuQI4wUAVQWKSdFwTRVI3qIAbRtJQdOWKqU0lJyXaKGxtJWVEsCnhF322jDEGNzWfAd_xHAyjJqzAPMnwDBmRgEjs7gwh5hw564EhvGVzv0j-KWM4DVg9xiM6_kPxnJnTA</recordid><startdate>19750630</startdate><enddate>19750630</enddate><creator>EIHO, Shigeru</creator><creator>KONDO, Bunji</creator><general>The Society of Instrument and Control Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19750630</creationdate><title>A Learning Control System Using Statistical Decision Method</title><author>EIHO, Shigeru ; KONDO, Bunji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1489-bdeaca3a2465227728154b3908253da429cb50290d0888926336ac2bc0d578423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><toplevel>online_resources</toplevel><creatorcontrib>EIHO, Shigeru</creatorcontrib><creatorcontrib>KONDO, Bunji</creatorcontrib><collection>CrossRef</collection><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EIHO, Shigeru</au><au>KONDO, Bunji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Learning Control System Using Statistical Decision Method</atitle><jtitle>Keisoku Jidō Seigyo Gakkai ronbunshū</jtitle><addtitle>Transactions of the Society of Instrument and Control Engineers</addtitle><date>1975-06-30</date><risdate>1975</risdate><volume>11</volume><issue>3</issue><spage>289</spage><epage>295</epage><pages>289-295</pages><issn>0453-4654</issn><eissn>1883-8189</eissn><abstract>This paper deals with a learning mechanism which uses the statistical decision method. It discusses in detail the minimax decision function which is usually effective when the control experience is limited. It deduces the necessary condition for the minimax decision function in the light of the theory of games. It also shows that the optimal minimax decision function is obtainable by the linear programming method. The paper goes on touch on the learning ability of the optimal minimax decision function. It suggests the relaxed minimax decision function obtained by relaxing the condition for the minimax decision function. The function thus obtained is suggested for use where the optimal minimax decision function lacks some learning ability. The relaxed minimax decision function, the paper tells us, does the same work that the minimax decision function does where the control experience is limited. As the control experience increases, the function can do the same work that the empirical Bayes decision function does.</abstract><pub>The Society of Instrument and Control Engineers</pub><doi>10.9746/sicetr1965.11.289</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0453-4654
ispartof Transactions of the Society of Instrument and Control Engineers, 1975/06/30, Vol.11(3), pp.289-295
issn 0453-4654
1883-8189
language eng
recordid cdi_crossref_primary_10_9746_sicetr1965_11_289
source EZB-FREE-00999 freely available EZB journals
title A Learning Control System Using Statistical Decision Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Learning%20Control%20System%20Using%20Statistical%20Decision%20Method&rft.jtitle=Keisoku%20Jid%C5%8D%20Seigyo%20Gakkai%20ronbunsh%C5%AB&rft.au=EIHO,%20Shigeru&rft.date=1975-06-30&rft.volume=11&rft.issue=3&rft.spage=289&rft.epage=295&rft.pages=289-295&rft.issn=0453-4654&rft.eissn=1883-8189&rft_id=info:doi/10.9746/sicetr1965.11.289&rft_dat=%3Cjstage_cross%3Earticle_sicetr1965_11_3_11_3_289_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true