Stress distribution in the bonobo (Pan paniscus) trapeziometacarpal joint during grasping

The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2021-10, Vol.9, p.e12068-e12068, Article 12068
Hauptverfasser: van Leeuwen, Timo, Lenthe, G. Harry van, Vereecke, Evie E., Schneider, Marco T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e12068
container_issue
container_start_page e12068
container_title PeerJ (San Francisco, CA)
container_volume 9
creator van Leeuwen, Timo
Lenthe, G. Harry van
Vereecke, Evie E.
Schneider, Marco T.
description The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos (Pan paniscus). Five cadaveric bonobo forearms were CT scanned in five standardized positions of the hand as a basis for the generation of parametric finite element models to compare grasps. We have developed a finite element analysis (FEA) approach to investigate stress distribution patterns in the TMC joint associated with each grasp type. We hypothesized that the simulated stress distributions for each position would correspond with the patterns expected from a saddle-shaped joint. However, we also expected differences in stress patterns arising from instraspecific variations in morphology. The models showed a high agreement between simulated and expected stress patterns for each of the five grasps (86% of successful simulations), while partially (52%) and fully (14%) diverging patterns were also encountered. We identified individual variations of key morphological features in the bonobo TMC joint that account for the diverging stress patterns and emphasized the effect of interindividual morphological variation on joint functioning. This study gives unprecedented insight in the form-function interactions in the TMC joint of the bonobo and provides an innovative FEA approach to modelling intra-articular stress distributions, a valuable tool for the study of the primate thumb biomechanics.
doi_str_mv 10.7717/peerj.12068
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7717_peerj_12068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714753357</galeid><doaj_id>oai_doaj_org_article_ea685f1228a2470f83289f27e2e3f4d6</doaj_id><sourcerecordid>A714753357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-127f4445b4ad37f4162ccdb9ddc82cd8c23e885474008bfab2de205bde091de53</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbKm98g8MCFKRXfM5ydwIZfGjUFBQL7wKmeTMbJbZZEwyFf31ZndL2xUvTC5ySJ7znuTkrarnGC2FwOLNBBA3S0xQIx9VpwQ3YiEpbx8_iE-q85Q2qAxJGiTp0-qEMoFow9vT6vuXHCGl2rqUo-vm7IKvna_zGuou-NCF-uKz9vWkvUtmTq_qHPUEv13YQtZGx0mP9SY4n2s7R-eHeog6TSV4Vj3p9Zjg_HY9q769f_d19XFx_enD1eryemE4R3mBiegZY7xj2tIS4oYYY7vWWiOJsdIQClJyJli5f9frjlggiHcWUIstcHpWXR10bdAbNUW31fGXCtqp_UaIg9IxOzOCAt1I3mNCpCalA72kRLY9EUCA9sw2RevtQWuauy1YA768djwSPT7xbq2GcKMkky3DtAhc3ArE8GOGlNW2tA3GUXsIc1KEy6ZtORK4oC_-Qjdhjr60qlCifBVlnN9Tgy4PcL4Ppa7ZiapLgZnglHJRqOU_qDItbJ0JHnpX9o8SXj5IWIMe8zqFcf_96Rh8fQBNDClF6O-agZHaOVDtHaj2Diy0PNA_oQt9Mg68gbuM4kCBBGGk3ZmxWbmsd_VWYfb5vtD_pNI_YZfsuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578263455</pqid></control><display><type>article</type><title>Stress distribution in the bonobo (Pan paniscus) trapeziometacarpal joint during grasping</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>van Leeuwen, Timo ; Lenthe, G. Harry van ; Vereecke, Evie E. ; Schneider, Marco T.</creator><creatorcontrib>van Leeuwen, Timo ; Lenthe, G. Harry van ; Vereecke, Evie E. ; Schneider, Marco T.</creatorcontrib><description>The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos (Pan paniscus). Five cadaveric bonobo forearms were CT scanned in five standardized positions of the hand as a basis for the generation of parametric finite element models to compare grasps. We have developed a finite element analysis (FEA) approach to investigate stress distribution patterns in the TMC joint associated with each grasp type. We hypothesized that the simulated stress distributions for each position would correspond with the patterns expected from a saddle-shaped joint. However, we also expected differences in stress patterns arising from instraspecific variations in morphology. The models showed a high agreement between simulated and expected stress patterns for each of the five grasps (86% of successful simulations), while partially (52%) and fully (14%) diverging patterns were also encountered. We identified individual variations of key morphological features in the bonobo TMC joint that account for the diverging stress patterns and emphasized the effect of interindividual morphological variation on joint functioning. This study gives unprecedented insight in the form-function interactions in the TMC joint of the bonobo and provides an innovative FEA approach to modelling intra-articular stress distributions, a valuable tool for the study of the primate thumb biomechanics.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.12068</identifier><identifier>PMID: 34703659</identifier><language>eng</language><publisher>LONDON: Peerj Inc</publisher><subject>Animal behavior ; Anthropology ; Biophysics ; Bonobo ; Cadavers ; Carpometacarpal joint ; Evolutionary Studies ; Finite element ; Finite element method ; Grasping ; Mathematical models ; Monkeys &amp; apes ; Morphology ; Multidisciplinary Sciences ; Pan paniscus ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Stress distribution ; Trapeziometacarpal joint ; Variation ; Zoology</subject><ispartof>PeerJ (San Francisco, CA), 2021-10, Vol.9, p.e12068-e12068, Article 12068</ispartof><rights>COPYRIGHT 2021 PeerJ. Ltd.</rights><rights>2021 van Leeuwen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 van Leeuwen et al. 2021 van Leeuwen et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000707242900006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c550t-127f4445b4ad37f4162ccdb9ddc82cd8c23e885474008bfab2de205bde091de53</citedby><cites>FETCH-LOGICAL-c550t-127f4445b4ad37f4162ccdb9ddc82cd8c23e885474008bfab2de205bde091de53</cites><orcidid>0000-0002-1312-9124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489413/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489413/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>van Leeuwen, Timo</creatorcontrib><creatorcontrib>Lenthe, G. Harry van</creatorcontrib><creatorcontrib>Vereecke, Evie E.</creatorcontrib><creatorcontrib>Schneider, Marco T.</creatorcontrib><title>Stress distribution in the bonobo (Pan paniscus) trapeziometacarpal joint during grasping</title><title>PeerJ (San Francisco, CA)</title><addtitle>PEERJ</addtitle><description>The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos (Pan paniscus). Five cadaveric bonobo forearms were CT scanned in five standardized positions of the hand as a basis for the generation of parametric finite element models to compare grasps. We have developed a finite element analysis (FEA) approach to investigate stress distribution patterns in the TMC joint associated with each grasp type. We hypothesized that the simulated stress distributions for each position would correspond with the patterns expected from a saddle-shaped joint. However, we also expected differences in stress patterns arising from instraspecific variations in morphology. The models showed a high agreement between simulated and expected stress patterns for each of the five grasps (86% of successful simulations), while partially (52%) and fully (14%) diverging patterns were also encountered. We identified individual variations of key morphological features in the bonobo TMC joint that account for the diverging stress patterns and emphasized the effect of interindividual morphological variation on joint functioning. This study gives unprecedented insight in the form-function interactions in the TMC joint of the bonobo and provides an innovative FEA approach to modelling intra-articular stress distributions, a valuable tool for the study of the primate thumb biomechanics.</description><subject>Animal behavior</subject><subject>Anthropology</subject><subject>Biophysics</subject><subject>Bonobo</subject><subject>Cadavers</subject><subject>Carpometacarpal joint</subject><subject>Evolutionary Studies</subject><subject>Finite element</subject><subject>Finite element method</subject><subject>Grasping</subject><subject>Mathematical models</subject><subject>Monkeys &amp; apes</subject><subject>Morphology</subject><subject>Multidisciplinary Sciences</subject><subject>Pan paniscus</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Stress distribution</subject><subject>Trapeziometacarpal joint</subject><subject>Variation</subject><subject>Zoology</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbKm98g8MCFKRXfM5ydwIZfGjUFBQL7wKmeTMbJbZZEwyFf31ZndL2xUvTC5ySJ7znuTkrarnGC2FwOLNBBA3S0xQIx9VpwQ3YiEpbx8_iE-q85Q2qAxJGiTp0-qEMoFow9vT6vuXHCGl2rqUo-vm7IKvna_zGuou-NCF-uKz9vWkvUtmTq_qHPUEv13YQtZGx0mP9SY4n2s7R-eHeog6TSV4Vj3p9Zjg_HY9q769f_d19XFx_enD1eryemE4R3mBiegZY7xj2tIS4oYYY7vWWiOJsdIQClJyJli5f9frjlggiHcWUIstcHpWXR10bdAbNUW31fGXCtqp_UaIg9IxOzOCAt1I3mNCpCalA72kRLY9EUCA9sw2RevtQWuauy1YA768djwSPT7xbq2GcKMkky3DtAhc3ArE8GOGlNW2tA3GUXsIc1KEy6ZtORK4oC_-Qjdhjr60qlCifBVlnN9Tgy4PcL4Ppa7ZiapLgZnglHJRqOU_qDItbJ0JHnpX9o8SXj5IWIMe8zqFcf_96Rh8fQBNDClF6O-agZHaOVDtHaj2Diy0PNA_oQt9Mg68gbuM4kCBBGGk3ZmxWbmsd_VWYfb5vtD_pNI_YZfsuw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>van Leeuwen, Timo</creator><creator>Lenthe, G. Harry van</creator><creator>Vereecke, Evie E.</creator><creator>Schneider, Marco T.</creator><general>Peerj Inc</general><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1312-9124</orcidid></search><sort><creationdate>20211001</creationdate><title>Stress distribution in the bonobo (Pan paniscus) trapeziometacarpal joint during grasping</title><author>van Leeuwen, Timo ; Lenthe, G. Harry van ; Vereecke, Evie E. ; Schneider, Marco T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-127f4445b4ad37f4162ccdb9ddc82cd8c23e885474008bfab2de205bde091de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal behavior</topic><topic>Anthropology</topic><topic>Biophysics</topic><topic>Bonobo</topic><topic>Cadavers</topic><topic>Carpometacarpal joint</topic><topic>Evolutionary Studies</topic><topic>Finite element</topic><topic>Finite element method</topic><topic>Grasping</topic><topic>Mathematical models</topic><topic>Monkeys &amp; apes</topic><topic>Morphology</topic><topic>Multidisciplinary Sciences</topic><topic>Pan paniscus</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Stress distribution</topic><topic>Trapeziometacarpal joint</topic><topic>Variation</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Leeuwen, Timo</creatorcontrib><creatorcontrib>Lenthe, G. Harry van</creatorcontrib><creatorcontrib>Vereecke, Evie E.</creatorcontrib><creatorcontrib>Schneider, Marco T.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Leeuwen, Timo</au><au>Lenthe, G. Harry van</au><au>Vereecke, Evie E.</au><au>Schneider, Marco T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress distribution in the bonobo (Pan paniscus) trapeziometacarpal joint during grasping</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><stitle>PEERJ</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>9</volume><spage>e12068</spage><epage>e12068</epage><pages>e12068-e12068</pages><artnum>12068</artnum><artnum>e12068</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos (Pan paniscus). Five cadaveric bonobo forearms were CT scanned in five standardized positions of the hand as a basis for the generation of parametric finite element models to compare grasps. We have developed a finite element analysis (FEA) approach to investigate stress distribution patterns in the TMC joint associated with each grasp type. We hypothesized that the simulated stress distributions for each position would correspond with the patterns expected from a saddle-shaped joint. However, we also expected differences in stress patterns arising from instraspecific variations in morphology. The models showed a high agreement between simulated and expected stress patterns for each of the five grasps (86% of successful simulations), while partially (52%) and fully (14%) diverging patterns were also encountered. We identified individual variations of key morphological features in the bonobo TMC joint that account for the diverging stress patterns and emphasized the effect of interindividual morphological variation on joint functioning. This study gives unprecedented insight in the form-function interactions in the TMC joint of the bonobo and provides an innovative FEA approach to modelling intra-articular stress distributions, a valuable tool for the study of the primate thumb biomechanics.</abstract><cop>LONDON</cop><pub>Peerj Inc</pub><pmid>34703659</pmid><doi>10.7717/peerj.12068</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1312-9124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-8359
ispartof PeerJ (San Francisco, CA), 2021-10, Vol.9, p.e12068-e12068, Article 12068
issn 2167-8359
2167-8359
language eng
recordid cdi_crossref_primary_10_7717_peerj_12068
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animal behavior
Anthropology
Biophysics
Bonobo
Cadavers
Carpometacarpal joint
Evolutionary Studies
Finite element
Finite element method
Grasping
Mathematical models
Monkeys & apes
Morphology
Multidisciplinary Sciences
Pan paniscus
Science & Technology
Science & Technology - Other Topics
Stress distribution
Trapeziometacarpal joint
Variation
Zoology
title Stress distribution in the bonobo (Pan paniscus) trapeziometacarpal joint during grasping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20distribution%20in%20the%20bonobo%20(Pan%20paniscus)%20trapeziometacarpal%20joint%20during%20grasping&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=van%20Leeuwen,%20Timo&rft.date=2021-10-01&rft.volume=9&rft.spage=e12068&rft.epage=e12068&rft.pages=e12068-e12068&rft.artnum=12068&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.12068&rft_dat=%3Cgale_cross%3EA714753357%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578263455&rft_id=info:pmid/34703659&rft_galeid=A714753357&rft_doaj_id=oai_doaj_org_article_ea685f1228a2470f83289f27e2e3f4d6&rfr_iscdi=true