Optimizing MOS-gated thyristor using voltage-based equivalent circuit model for designing steep-subthreshold-slope PN-body-tied silicon-on-insulator FET

A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2018-04, Vol.57 (4S), p.4
Hauptverfasser: Ueda, Daiki, Takeuchi, Kiyoshi, Kobayashi, Masaharu, Hiramoto, Toshiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.57.04FD06