Prediction of dielectric constants using a combination of first principles calculations and machine learning
This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2019-11, Vol.58 (SL), p.SLLC01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | SL |
container_start_page | SLLC01 |
container_title | Japanese Journal of Applied Physics |
container_volume | 58 |
creator | Umeda, Yuji Hayashi, Hiroyuki Moriwake, Hiroki Tanaka, Isao |
description | This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100. |
doi_str_mv | 10.7567/1347-4065/ab34d6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7567_1347_4065_ab34d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309779116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</originalsourceid><addsrcrecordid>eNp9kMtLxDAQxoMouD7uHgOeBOvm2bRHWXxBQUE9hzQPTemmNWkP_vdmXR8XEQaGmfnNN8wHwAlGF4KXYokpEwVDJV-qljJT7oDFT2sXLBAiuGA1IfvgIKUulyVneAH6h2iN15MfAhwcNN72Vk_Ra6iHkCYVpgTn5MMLVLmzbn1Q36zzMU1wjD5oP_Y2Qa16Pfef8wRVMHCt9KsPFvZWxZA1jsCeU32yx1_5EDxfXz2tbovm_uZuddkUmjIyFQQzwlWNMGuJaQmnBGNREUdsa1DVItdypjRTlcVItNoZXHHEBWVMlHmA6CE43eqOcXibbZpkN8wx5JOSUFQLUWNcZgptKR2HlKJ1Mv-yVvFdYiQ3nsqNgXJjoNx6mlfOtyt-GH81_8HP_sC7To2SV_KxydGsEJajcfQDeluHUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309779116</pqid></control><display><type>article</type><title>Prediction of dielectric constants using a combination of first principles calculations and machine learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Umeda, Yuji ; Hayashi, Hiroyuki ; Moriwake, Hiroki ; Tanaka, Isao</creator><creatorcontrib>Umeda, Yuji ; Hayashi, Hiroyuki ; Moriwake, Hiroki ; Tanaka, Isao</creatorcontrib><description>This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/1347-4065/ab34d6</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Artificial intelligence ; Crystal structure ; First principles ; Machine learning ; Permittivity ; Perturbation methods ; Perturbation theory ; Phonons ; Predictions ; Systematic errors</subject><ispartof>Japanese Journal of Applied Physics, 2019-11, Vol.58 (SL), p.SLLC01</ispartof><rights>2019 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Nov 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</citedby><cites>FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/1347-4065/ab34d6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Umeda, Yuji</creatorcontrib><creatorcontrib>Hayashi, Hiroyuki</creatorcontrib><creatorcontrib>Moriwake, Hiroki</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><title>Prediction of dielectric constants using a combination of first principles calculations and machine learning</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100.</description><subject>Artificial intelligence</subject><subject>Crystal structure</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Permittivity</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Phonons</subject><subject>Predictions</subject><subject>Systematic errors</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQxoMouD7uHgOeBOvm2bRHWXxBQUE9hzQPTemmNWkP_vdmXR8XEQaGmfnNN8wHwAlGF4KXYokpEwVDJV-qljJT7oDFT2sXLBAiuGA1IfvgIKUulyVneAH6h2iN15MfAhwcNN72Vk_Ra6iHkCYVpgTn5MMLVLmzbn1Q36zzMU1wjD5oP_Y2Qa16Pfef8wRVMHCt9KsPFvZWxZA1jsCeU32yx1_5EDxfXz2tbovm_uZuddkUmjIyFQQzwlWNMGuJaQmnBGNREUdsa1DVItdypjRTlcVItNoZXHHEBWVMlHmA6CE43eqOcXibbZpkN8wx5JOSUFQLUWNcZgptKR2HlKJ1Mv-yVvFdYiQ3nsqNgXJjoNx6mlfOtyt-GH81_8HP_sC7To2SV_KxydGsEJajcfQDeluHUg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Umeda, Yuji</creator><creator>Hayashi, Hiroyuki</creator><creator>Moriwake, Hiroki</creator><creator>Tanaka, Isao</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191101</creationdate><title>Prediction of dielectric constants using a combination of first principles calculations and machine learning</title><author>Umeda, Yuji ; Hayashi, Hiroyuki ; Moriwake, Hiroki ; Tanaka, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Crystal structure</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Permittivity</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Phonons</topic><topic>Predictions</topic><topic>Systematic errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umeda, Yuji</creatorcontrib><creatorcontrib>Hayashi, Hiroyuki</creatorcontrib><creatorcontrib>Moriwake, Hiroki</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umeda, Yuji</au><au>Hayashi, Hiroyuki</au><au>Moriwake, Hiroki</au><au>Tanaka, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of dielectric constants using a combination of first principles calculations and machine learning</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>58</volume><issue>SL</issue><spage>SLLC01</spage><pages>SLLC01-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.7567/1347-4065/ab34d6</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2019-11, Vol.58 (SL), p.SLLC01 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_crossref_primary_10_7567_1347_4065_ab34d6 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Artificial intelligence Crystal structure First principles Machine learning Permittivity Perturbation methods Perturbation theory Phonons Predictions Systematic errors |
title | Prediction of dielectric constants using a combination of first principles calculations and machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20dielectric%20constants%20using%20a%20combination%20of%20first%20principles%20calculations%20and%20machine%20learning&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Umeda,%20Yuji&rft.date=2019-11-01&rft.volume=58&rft.issue=SL&rft.spage=SLLC01&rft.pages=SLLC01-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/1347-4065/ab34d6&rft_dat=%3Cproquest_cross%3E2309779116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309779116&rft_id=info:pmid/&rfr_iscdi=true |