Prediction of dielectric constants using a combination of first principles calculations and machine learning

This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2019-11, Vol.58 (SL), p.SLLC01
Hauptverfasser: Umeda, Yuji, Hayashi, Hiroyuki, Moriwake, Hiroki, Tanaka, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue SL
container_start_page SLLC01
container_title Japanese Journal of Applied Physics
container_volume 58
creator Umeda, Yuji
Hayashi, Hiroyuki
Moriwake, Hiroki
Tanaka, Isao
description This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100.
doi_str_mv 10.7567/1347-4065/ab34d6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7567_1347_4065_ab34d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309779116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</originalsourceid><addsrcrecordid>eNp9kMtLxDAQxoMouD7uHgOeBOvm2bRHWXxBQUE9hzQPTemmNWkP_vdmXR8XEQaGmfnNN8wHwAlGF4KXYokpEwVDJV-qljJT7oDFT2sXLBAiuGA1IfvgIKUulyVneAH6h2iN15MfAhwcNN72Vk_Ra6iHkCYVpgTn5MMLVLmzbn1Q36zzMU1wjD5oP_Y2Qa16Pfef8wRVMHCt9KsPFvZWxZA1jsCeU32yx1_5EDxfXz2tbovm_uZuddkUmjIyFQQzwlWNMGuJaQmnBGNREUdsa1DVItdypjRTlcVItNoZXHHEBWVMlHmA6CE43eqOcXibbZpkN8wx5JOSUFQLUWNcZgptKR2HlKJ1Mv-yVvFdYiQ3nsqNgXJjoNx6mlfOtyt-GH81_8HP_sC7To2SV_KxydGsEJajcfQDeluHUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309779116</pqid></control><display><type>article</type><title>Prediction of dielectric constants using a combination of first principles calculations and machine learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Umeda, Yuji ; Hayashi, Hiroyuki ; Moriwake, Hiroki ; Tanaka, Isao</creator><creatorcontrib>Umeda, Yuji ; Hayashi, Hiroyuki ; Moriwake, Hiroki ; Tanaka, Isao</creatorcontrib><description>This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/1347-4065/ab34d6</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Artificial intelligence ; Crystal structure ; First principles ; Machine learning ; Permittivity ; Perturbation methods ; Perturbation theory ; Phonons ; Predictions ; Systematic errors</subject><ispartof>Japanese Journal of Applied Physics, 2019-11, Vol.58 (SL), p.SLLC01</ispartof><rights>2019 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Nov 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</citedby><cites>FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/1347-4065/ab34d6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Umeda, Yuji</creatorcontrib><creatorcontrib>Hayashi, Hiroyuki</creatorcontrib><creatorcontrib>Moriwake, Hiroki</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><title>Prediction of dielectric constants using a combination of first principles calculations and machine learning</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100.</description><subject>Artificial intelligence</subject><subject>Crystal structure</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Permittivity</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Phonons</subject><subject>Predictions</subject><subject>Systematic errors</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQxoMouD7uHgOeBOvm2bRHWXxBQUE9hzQPTemmNWkP_vdmXR8XEQaGmfnNN8wHwAlGF4KXYokpEwVDJV-qljJT7oDFT2sXLBAiuGA1IfvgIKUulyVneAH6h2iN15MfAhwcNN72Vk_Ra6iHkCYVpgTn5MMLVLmzbn1Q36zzMU1wjD5oP_Y2Qa16Pfef8wRVMHCt9KsPFvZWxZA1jsCeU32yx1_5EDxfXz2tbovm_uZuddkUmjIyFQQzwlWNMGuJaQmnBGNREUdsa1DVItdypjRTlcVItNoZXHHEBWVMlHmA6CE43eqOcXibbZpkN8wx5JOSUFQLUWNcZgptKR2HlKJ1Mv-yVvFdYiQ3nsqNgXJjoNx6mlfOtyt-GH81_8HP_sC7To2SV_KxydGsEJajcfQDeluHUg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Umeda, Yuji</creator><creator>Hayashi, Hiroyuki</creator><creator>Moriwake, Hiroki</creator><creator>Tanaka, Isao</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191101</creationdate><title>Prediction of dielectric constants using a combination of first principles calculations and machine learning</title><author>Umeda, Yuji ; Hayashi, Hiroyuki ; Moriwake, Hiroki ; Tanaka, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-21425a9014b2db253211782f2ebd08b0fb54ac4a8e107bcfd185057344764ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Crystal structure</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Permittivity</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Phonons</topic><topic>Predictions</topic><topic>Systematic errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umeda, Yuji</creatorcontrib><creatorcontrib>Hayashi, Hiroyuki</creatorcontrib><creatorcontrib>Moriwake, Hiroki</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umeda, Yuji</au><au>Hayashi, Hiroyuki</au><au>Moriwake, Hiroki</au><au>Tanaka, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of dielectric constants using a combination of first principles calculations and machine learning</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>58</volume><issue>SL</issue><spage>SLLC01</spage><pages>SLLC01-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>This study reports the method of exploring new dielectric materials by combining a large set of first principles calculations and machine learning. A database of dielectric constants was constructed using the first principles calculations. Crystal structures of 3382 candidate compounds were obtained from the Materials Project database. Harmonic phonon calculations were made to select the compounds showing no imaginary phonon modes. The dielectric constants were then calculated using the density function perturbation theory resulting in 2504 compounds to be constructed in the database. Machine learning methods were adopted to correct the calculated dielectric constants for the systematic errors found between the calculated and the experimental dielectric constants. A random forest model with 68 feature variables successfully predicted dielectric constants within the 50% error range of the logarithmic of the dielectric constant. The predicted dielectric constants for most of the compounds were in the range 3-100.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.7567/1347-4065/ab34d6</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2019-11, Vol.58 (SL), p.SLLC01
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_7567_1347_4065_ab34d6
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Artificial intelligence
Crystal structure
First principles
Machine learning
Permittivity
Perturbation methods
Perturbation theory
Phonons
Predictions
Systematic errors
title Prediction of dielectric constants using a combination of first principles calculations and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20dielectric%20constants%20using%20a%20combination%20of%20first%20principles%20calculations%20and%20machine%20learning&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Umeda,%20Yuji&rft.date=2019-11-01&rft.volume=58&rft.issue=SL&rft.spage=SLLC01&rft.pages=SLLC01-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/1347-4065/ab34d6&rft_dat=%3Cproquest_cross%3E2309779116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309779116&rft_id=info:pmid/&rfr_iscdi=true