The geometric basis of epithelial convergent extension
Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control o...
Gespeichert in:
Veröffentlicht in: | eLife 2024-12, Vol.13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 13 |
creator | Brauns, Fridtjof Claussen, Nikolas H Lefebvre, Matthew F Wieschaus, Eric F Shraiman, Boris I |
description | Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression. |
doi_str_mv | 10.7554/eLife.95521.3 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_7554_eLife_95521_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7554_eLife_95521_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c773-9d039bf03a9301aa0c17fb5db5cd2caf0674953f3842d95e922842729b2a77fa3</originalsourceid><addsrcrecordid>eNpNj71OwzAYRS1EJarSsbtfIOHzXx2PqOJPisSSgc2ync-tUZpUdoTg7SmFgbvcMx3pELJhUGul5B22KWJtlOKsFldkyUFBBY18u_7HN2Rdyjucp2XTMLMk2-6AdI_TEeecAvWupEKnSPGU5gMOyQ00TOMH5j2OM8XPGceSpvGWLKIbCq7_fkW6x4du91y1r08vu_u2ClqLyvQgjI8gnBHAnIPAdPSq9yr0PLgIWy2NElE0kvdGoeH8TJobz53W0YkVqX61IU-lZIz2lNPR5S_LwP5k20u2vWRbIb4BOv9Lew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The geometric basis of epithelial convergent extension</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Brauns, Fridtjof ; Claussen, Nikolas H ; Lefebvre, Matthew F ; Wieschaus, Eric F ; Shraiman, Boris I</creator><creatorcontrib>Brauns, Fridtjof ; Claussen, Nikolas H ; Lefebvre, Matthew F ; Wieschaus, Eric F ; Shraiman, Boris I</creatorcontrib><description>Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.95521.3</identifier><language>eng</language><ispartof>eLife, 2024-12, Vol.13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c773-9d039bf03a9301aa0c17fb5db5cd2caf0674953f3842d95e922842729b2a77fa3</cites><orcidid>0000-0002-0727-3349 ; 0000-0003-0886-8990 ; 0000-0002-9590-4293 ; 0000-0002-9020-6437 ; 0000-0002-6108-9278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Brauns, Fridtjof</creatorcontrib><creatorcontrib>Claussen, Nikolas H</creatorcontrib><creatorcontrib>Lefebvre, Matthew F</creatorcontrib><creatorcontrib>Wieschaus, Eric F</creatorcontrib><creatorcontrib>Shraiman, Boris I</creatorcontrib><title>The geometric basis of epithelial convergent extension</title><title>eLife</title><description>Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.</description><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj71OwzAYRS1EJarSsbtfIOHzXx2PqOJPisSSgc2ync-tUZpUdoTg7SmFgbvcMx3pELJhUGul5B22KWJtlOKsFldkyUFBBY18u_7HN2Rdyjucp2XTMLMk2-6AdI_TEeecAvWupEKnSPGU5gMOyQ00TOMH5j2OM8XPGceSpvGWLKIbCq7_fkW6x4du91y1r08vu_u2ClqLyvQgjI8gnBHAnIPAdPSq9yr0PLgIWy2NElE0kvdGoeH8TJobz53W0YkVqX61IU-lZIz2lNPR5S_LwP5k20u2vWRbIb4BOv9Lew</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Brauns, Fridtjof</creator><creator>Claussen, Nikolas H</creator><creator>Lefebvre, Matthew F</creator><creator>Wieschaus, Eric F</creator><creator>Shraiman, Boris I</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0727-3349</orcidid><orcidid>https://orcid.org/0000-0003-0886-8990</orcidid><orcidid>https://orcid.org/0000-0002-9590-4293</orcidid><orcidid>https://orcid.org/0000-0002-9020-6437</orcidid><orcidid>https://orcid.org/0000-0002-6108-9278</orcidid></search><sort><creationdate>20241219</creationdate><title>The geometric basis of epithelial convergent extension</title><author>Brauns, Fridtjof ; Claussen, Nikolas H ; Lefebvre, Matthew F ; Wieschaus, Eric F ; Shraiman, Boris I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c773-9d039bf03a9301aa0c17fb5db5cd2caf0674953f3842d95e922842729b2a77fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brauns, Fridtjof</creatorcontrib><creatorcontrib>Claussen, Nikolas H</creatorcontrib><creatorcontrib>Lefebvre, Matthew F</creatorcontrib><creatorcontrib>Wieschaus, Eric F</creatorcontrib><creatorcontrib>Shraiman, Boris I</creatorcontrib><collection>CrossRef</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brauns, Fridtjof</au><au>Claussen, Nikolas H</au><au>Lefebvre, Matthew F</au><au>Wieschaus, Eric F</au><au>Shraiman, Boris I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometric basis of epithelial convergent extension</atitle><jtitle>eLife</jtitle><date>2024-12-19</date><risdate>2024</risdate><volume>13</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.</abstract><doi>10.7554/eLife.95521.3</doi><orcidid>https://orcid.org/0000-0002-0727-3349</orcidid><orcidid>https://orcid.org/0000-0003-0886-8990</orcidid><orcidid>https://orcid.org/0000-0002-9590-4293</orcidid><orcidid>https://orcid.org/0000-0002-9020-6437</orcidid><orcidid>https://orcid.org/0000-0002-6108-9278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2024-12, Vol.13 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_crossref_primary_10_7554_eLife_95521_3 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
title | The geometric basis of epithelial convergent extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometric%20basis%20of%20epithelial%20convergent%20extension&rft.jtitle=eLife&rft.au=Brauns,%20Fridtjof&rft.date=2024-12-19&rft.volume=13&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.95521.3&rft_dat=%3Ccrossref%3E10_7554_eLife_95521_3%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |