Mechanistic insights into volatile anesthetic modulation of K2P channels
K2P potassium channels are known to be modulated by volatile anesthetic (VA) drugs and play important roles in clinically relevant effects that accompany general anesthesia. Here, we utilize a photoaffinity analog of the VA isoflurane to identify a VA-binding site in the TREK1 K2P channel. The funct...
Gespeichert in:
Veröffentlicht in: | eLife 2020-12, Vol.9, Article 59839 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 9 |
creator | Wague, Aboubacar Joseph, Thomas T. Woll, Kellie A. Bu, Weiming Vaidya, Kiran A. Bhanu, Natarajan Garcia, Benjamin A. Nimigean, Crina M. Eckenhoff, Roderic G. Riegelhaupt, Paul M. |
description | K2P potassium channels are known to be modulated by volatile anesthetic (VA) drugs and play important roles in clinically relevant effects that accompany general anesthesia. Here, we utilize a photoaffinity analog of the VA isoflurane to identify a VA-binding site in the TREK1 K2P channel. The functional importance of the identified site was validated by mutagenesis and biochemical modification. Molecular dynamics simulations of TREK1 in the presence of VA found multiple neighboring residues on TREK1 TM2, TM3, and TM4 that contribute to anesthetic binding. The identified VA-binding region contains residues that play roles in the mechanisms by which heat, mechanical stretch, and pharmacological modulators alter TREK1 channel activity and overlaps with positions found to modulate TASK K2P channel VA sensitivity. Our findings define molecular contacts that mediate VA binding to TREK1 channels and suggest a mechanistic basis to explain how K2P channels are modulated by VAs. |
doi_str_mv | 10.7554/eLife.59839 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7554_eLife_59839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A647430229</galeid><doaj_id>oai_doaj_org_article_7e11d5322d4c418d8767b99777b16d8b</doaj_id><sourcerecordid>A647430229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-8585b99ae329051ae7287aa129c13852d48d47d05b33aa02d2cd10045fd9a24a3</originalsourceid><addsrcrecordid>eNqNks9rFDEUxwdRbKk9eZcBTyK75uckcxHKUtvFFcUf4C1kkjezKTNJmWSr_e_N7OraAQ8mhzxePu_7XsK3KJ5jtBScszewcS0seS1p_ag4JYijBZLs--MH8UlxHuMNykswKXH9tDihlDIuBD4trj-A2WrvYnKmdD66bptiDlIo70Kvk-uh1B5i2sJEDMHupmzwZWjL9-RTOVV76OOz4kmr-wjnv8-z4tu7y6-r68Xm49V6dbFZGM5kWkgueVPXGiipEccaBJFCa0xqg6nkxDJpmbCIN5RqjYglxmKEGG9trQnT9KxYH3Rt0DfqdnSDHu9V0E7tE2HslB7zqD0oARhbTkkWNQxLK0Ulcm8hRIMrK5us9fagdbtrBrAGfBp1PxOd33i3VV24U0JIzGuRBV4eBDqd-znfhoyZwUWjLiomGEWE1Jla_oPK28LgTPDQ5l-eF7yaFWQmwc_U6V2Mav3l85x9fWDNGGIcoT2Oj5GaLKL2FlF7i2T6xcMXH9k_hvgr9wOa0EbjwBs4YtlDFaoElpOb0ETL_6dXLu2dswo7n-gvLzXVyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic insights into volatile anesthetic modulation of K2P channels</title><source>PubMed Central (Open access)</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Wague, Aboubacar ; Joseph, Thomas T. ; Woll, Kellie A. ; Bu, Weiming ; Vaidya, Kiran A. ; Bhanu, Natarajan ; Garcia, Benjamin A. ; Nimigean, Crina M. ; Eckenhoff, Roderic G. ; Riegelhaupt, Paul M.</creator><creatorcontrib>Wague, Aboubacar ; Joseph, Thomas T. ; Woll, Kellie A. ; Bu, Weiming ; Vaidya, Kiran A. ; Bhanu, Natarajan ; Garcia, Benjamin A. ; Nimigean, Crina M. ; Eckenhoff, Roderic G. ; Riegelhaupt, Paul M.</creatorcontrib><description>K2P potassium channels are known to be modulated by volatile anesthetic (VA) drugs and play important roles in clinically relevant effects that accompany general anesthesia. Here, we utilize a photoaffinity analog of the VA isoflurane to identify a VA-binding site in the TREK1 K2P channel. The functional importance of the identified site was validated by mutagenesis and biochemical modification. Molecular dynamics simulations of TREK1 in the presence of VA found multiple neighboring residues on TREK1 TM2, TM3, and TM4 that contribute to anesthetic binding. The identified VA-binding region contains residues that play roles in the mechanisms by which heat, mechanical stretch, and pharmacological modulators alter TREK1 channel activity and overlaps with positions found to modulate TASK K2P channel VA sensitivity. Our findings define molecular contacts that mediate VA binding to TREK1 channels and suggest a mechanistic basis to explain how K2P channels are modulated by VAs.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.59839</identifier><identifier>PMID: 33345771</identifier><language>eng</language><publisher>CAMBRIDGE: Elife Sciences Publications Ltd</publisher><subject>Anesthesia ; anesthetic ; Anesthetics, Inhalation - metabolism ; Anesthetics, Inhalation - pharmacology ; Animals ; Binding Sites ; Biochemistry and Chemical Biology ; Biology ; Humans ; isoflurane ; Isoflurane - pharmacology ; K2P ; Life Sciences & Biomedicine ; Life Sciences & Biomedicine - Other Topics ; Mice ; Molecular Docking Simulation ; Molecular dynamics ; Potassium Channels - drug effects ; Potassium Channels - metabolism ; Potassium Channels, Tandem Pore Domain - drug effects ; Potassium Channels, Tandem Pore Domain - metabolism ; Science & Technology ; Structural Biology and Molecular Biophysics ; TREK1 ; Xenopus laevis ; Zebrafish</subject><ispartof>eLife, 2020-12, Vol.9, Article 59839</ispartof><rights>2020, Wague et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Wague et al 2020 Wague et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606718000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c548t-8585b99ae329051ae7287aa129c13852d48d47d05b33aa02d2cd10045fd9a24a3</citedby><cites>FETCH-LOGICAL-c548t-8585b99ae329051ae7287aa129c13852d48d47d05b33aa02d2cd10045fd9a24a3</cites><orcidid>0000-0002-6254-4447 ; 0000-0001-8593-2605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781597/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781597/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33345771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wague, Aboubacar</creatorcontrib><creatorcontrib>Joseph, Thomas T.</creatorcontrib><creatorcontrib>Woll, Kellie A.</creatorcontrib><creatorcontrib>Bu, Weiming</creatorcontrib><creatorcontrib>Vaidya, Kiran A.</creatorcontrib><creatorcontrib>Bhanu, Natarajan</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><creatorcontrib>Nimigean, Crina M.</creatorcontrib><creatorcontrib>Eckenhoff, Roderic G.</creatorcontrib><creatorcontrib>Riegelhaupt, Paul M.</creatorcontrib><title>Mechanistic insights into volatile anesthetic modulation of K2P channels</title><title>eLife</title><addtitle>ELIFE</addtitle><addtitle>Elife</addtitle><description>K2P potassium channels are known to be modulated by volatile anesthetic (VA) drugs and play important roles in clinically relevant effects that accompany general anesthesia. Here, we utilize a photoaffinity analog of the VA isoflurane to identify a VA-binding site in the TREK1 K2P channel. The functional importance of the identified site was validated by mutagenesis and biochemical modification. Molecular dynamics simulations of TREK1 in the presence of VA found multiple neighboring residues on TREK1 TM2, TM3, and TM4 that contribute to anesthetic binding. The identified VA-binding region contains residues that play roles in the mechanisms by which heat, mechanical stretch, and pharmacological modulators alter TREK1 channel activity and overlaps with positions found to modulate TASK K2P channel VA sensitivity. Our findings define molecular contacts that mediate VA binding to TREK1 channels and suggest a mechanistic basis to explain how K2P channels are modulated by VAs.</description><subject>Anesthesia</subject><subject>anesthetic</subject><subject>Anesthetics, Inhalation - metabolism</subject><subject>Anesthetics, Inhalation - pharmacology</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Biochemistry and Chemical Biology</subject><subject>Biology</subject><subject>Humans</subject><subject>isoflurane</subject><subject>Isoflurane - pharmacology</subject><subject>K2P</subject><subject>Life Sciences & Biomedicine</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>Mice</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Tandem Pore Domain - drug effects</subject><subject>Potassium Channels, Tandem Pore Domain - metabolism</subject><subject>Science & Technology</subject><subject>Structural Biology and Molecular Biophysics</subject><subject>TREK1</subject><subject>Xenopus laevis</subject><subject>Zebrafish</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9rFDEUxwdRbKk9eZcBTyK75uckcxHKUtvFFcUf4C1kkjezKTNJmWSr_e_N7OraAQ8mhzxePu_7XsK3KJ5jtBScszewcS0seS1p_ag4JYijBZLs--MH8UlxHuMNykswKXH9tDihlDIuBD4trj-A2WrvYnKmdD66bptiDlIo70Kvk-uh1B5i2sJEDMHupmzwZWjL9-RTOVV76OOz4kmr-wjnv8-z4tu7y6-r68Xm49V6dbFZGM5kWkgueVPXGiipEccaBJFCa0xqg6nkxDJpmbCIN5RqjYglxmKEGG9trQnT9KxYH3Rt0DfqdnSDHu9V0E7tE2HslB7zqD0oARhbTkkWNQxLK0Ulcm8hRIMrK5us9fagdbtrBrAGfBp1PxOd33i3VV24U0JIzGuRBV4eBDqd-znfhoyZwUWjLiomGEWE1Jla_oPK28LgTPDQ5l-eF7yaFWQmwc_U6V2Mav3l85x9fWDNGGIcoT2Oj5GaLKL2FlF7i2T6xcMXH9k_hvgr9wOa0EbjwBs4YtlDFaoElpOb0ETL_6dXLu2dswo7n-gvLzXVyA</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Wague, Aboubacar</creator><creator>Joseph, Thomas T.</creator><creator>Woll, Kellie A.</creator><creator>Bu, Weiming</creator><creator>Vaidya, Kiran A.</creator><creator>Bhanu, Natarajan</creator><creator>Garcia, Benjamin A.</creator><creator>Nimigean, Crina M.</creator><creator>Eckenhoff, Roderic G.</creator><creator>Riegelhaupt, Paul M.</creator><general>Elife Sciences Publications Ltd</general><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6254-4447</orcidid><orcidid>https://orcid.org/0000-0001-8593-2605</orcidid></search><sort><creationdate>20201221</creationdate><title>Mechanistic insights into volatile anesthetic modulation of K2P channels</title><author>Wague, Aboubacar ; Joseph, Thomas T. ; Woll, Kellie A. ; Bu, Weiming ; Vaidya, Kiran A. ; Bhanu, Natarajan ; Garcia, Benjamin A. ; Nimigean, Crina M. ; Eckenhoff, Roderic G. ; Riegelhaupt, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-8585b99ae329051ae7287aa129c13852d48d47d05b33aa02d2cd10045fd9a24a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anesthesia</topic><topic>anesthetic</topic><topic>Anesthetics, Inhalation - metabolism</topic><topic>Anesthetics, Inhalation - pharmacology</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Biochemistry and Chemical Biology</topic><topic>Biology</topic><topic>Humans</topic><topic>isoflurane</topic><topic>Isoflurane - pharmacology</topic><topic>K2P</topic><topic>Life Sciences & Biomedicine</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>Mice</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Tandem Pore Domain - drug effects</topic><topic>Potassium Channels, Tandem Pore Domain - metabolism</topic><topic>Science & Technology</topic><topic>Structural Biology and Molecular Biophysics</topic><topic>TREK1</topic><topic>Xenopus laevis</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wague, Aboubacar</creatorcontrib><creatorcontrib>Joseph, Thomas T.</creatorcontrib><creatorcontrib>Woll, Kellie A.</creatorcontrib><creatorcontrib>Bu, Weiming</creatorcontrib><creatorcontrib>Vaidya, Kiran A.</creatorcontrib><creatorcontrib>Bhanu, Natarajan</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><creatorcontrib>Nimigean, Crina M.</creatorcontrib><creatorcontrib>Eckenhoff, Roderic G.</creatorcontrib><creatorcontrib>Riegelhaupt, Paul M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wague, Aboubacar</au><au>Joseph, Thomas T.</au><au>Woll, Kellie A.</au><au>Bu, Weiming</au><au>Vaidya, Kiran A.</au><au>Bhanu, Natarajan</au><au>Garcia, Benjamin A.</au><au>Nimigean, Crina M.</au><au>Eckenhoff, Roderic G.</au><au>Riegelhaupt, Paul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insights into volatile anesthetic modulation of K2P channels</atitle><jtitle>eLife</jtitle><stitle>ELIFE</stitle><addtitle>Elife</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>9</volume><artnum>59839</artnum><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>K2P potassium channels are known to be modulated by volatile anesthetic (VA) drugs and play important roles in clinically relevant effects that accompany general anesthesia. Here, we utilize a photoaffinity analog of the VA isoflurane to identify a VA-binding site in the TREK1 K2P channel. The functional importance of the identified site was validated by mutagenesis and biochemical modification. Molecular dynamics simulations of TREK1 in the presence of VA found multiple neighboring residues on TREK1 TM2, TM3, and TM4 that contribute to anesthetic binding. The identified VA-binding region contains residues that play roles in the mechanisms by which heat, mechanical stretch, and pharmacological modulators alter TREK1 channel activity and overlaps with positions found to modulate TASK K2P channel VA sensitivity. Our findings define molecular contacts that mediate VA binding to TREK1 channels and suggest a mechanistic basis to explain how K2P channels are modulated by VAs.</abstract><cop>CAMBRIDGE</cop><pub>Elife Sciences Publications Ltd</pub><pmid>33345771</pmid><doi>10.7554/eLife.59839</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6254-4447</orcidid><orcidid>https://orcid.org/0000-0001-8593-2605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2020-12, Vol.9, Article 59839 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_crossref_primary_10_7554_eLife_59839 |
source | PubMed Central (Open access); MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Anesthesia anesthetic Anesthetics, Inhalation - metabolism Anesthetics, Inhalation - pharmacology Animals Binding Sites Biochemistry and Chemical Biology Biology Humans isoflurane Isoflurane - pharmacology K2P Life Sciences & Biomedicine Life Sciences & Biomedicine - Other Topics Mice Molecular Docking Simulation Molecular dynamics Potassium Channels - drug effects Potassium Channels - metabolism Potassium Channels, Tandem Pore Domain - drug effects Potassium Channels, Tandem Pore Domain - metabolism Science & Technology Structural Biology and Molecular Biophysics TREK1 Xenopus laevis Zebrafish |
title | Mechanistic insights into volatile anesthetic modulation of K2P channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insights%20into%20volatile%20anesthetic%20modulation%20of%20K2P%20channels&rft.jtitle=eLife&rft.au=Wague,%20Aboubacar&rft.date=2020-12-21&rft.volume=9&rft.artnum=59839&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.59839&rft_dat=%3Cgale_cross%3EA647430229%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33345771&rft_galeid=A647430229&rft_doaj_id=oai_doaj_org_article_7e11d5322d4c418d8767b99777b16d8b&rfr_iscdi=true |