TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS
Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor o...
Gespeichert in:
Veröffentlicht in: | eLife 2020-12, Vol.9, Article 59419 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 9 |
creator | Cunningham, Kathleen M. Maulding, Kirstin Ruan, Kai Senturk, Mumine Grima, Jonathan C. Sung, Hyun Zuo, Zhongyuan Song, Helen Gao, Junli Dubey, Sandeep Rothstein, Jeffrey D. Zhang, Ke Bellen, Hugo J. Lloyd, Thomas E. |
description | Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD. |
doi_str_mv | 10.7554/eLife.59419 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7554_eLife_59419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A646411981</galeid><doaj_id>oai_doaj_org_article_1a36dcfe2f884b73b4686aa681abb4ea</doaj_id><sourcerecordid>A646411981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</originalsourceid><addsrcrecordid>eNqNksFv0zAUxiMEYtPYiTuKxAWE2tm14zgXpFJtUKkIiQ6Jm_XiPHceiV1iB9h_j9OOskocsA-2nn_-_D7ry7LnlEzLouAXuLIGp0XFafUoO52RgkyI5F8fP9ifZOch3JI0Si4lrZ5mJ4wxQqSQp9n6-ury3cVHG03eWvct5Lbbgu2xyd2gW4R-LPg-5tHnMES_vYGNb--CD76DNm_ughmcjta73Lp8UU3mq_Wz7ImBNuD5_XqWfbm6vF58mKw-vV8u5quJLriMEyg0lki1SY0wLIrS8KJhkmpBeEVmjUTacCYIliQ5nRnCykIawyrNKmgYZWfZcq_beLhV29520N8pD1btCr7fKOijTTYUBSYabXBmpOR1yWoupAAQkkJdc4Sk9XavtR3qDhuNLvbQHokenzh7ozb-hypTU6QkSeDVvUDvvw8Youps0Ni24NAPQc24qEjFuGQJfblHN5Bas874pKhHXM0FF5zSSo7upv-g0myws9o7NDbVjy68PrqQmIi_4gaGENRy_fmYfbNnde9D6NEcnFKixmCpXbDULliJfvHwcw7snxj9lfuJtTdBW3QaD1hKniCMcS7GEI6Py_-nFzbCGK-FH1xkvwEjRefX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469093483</pqid></control><display><type>article</type><title>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cunningham, Kathleen M. ; Maulding, Kirstin ; Ruan, Kai ; Senturk, Mumine ; Grima, Jonathan C. ; Sung, Hyun ; Zuo, Zhongyuan ; Song, Helen ; Gao, Junli ; Dubey, Sandeep ; Rothstein, Jeffrey D. ; Zhang, Ke ; Bellen, Hugo J. ; Lloyd, Thomas E.</creator><creatorcontrib>Cunningham, Kathleen M. ; Maulding, Kirstin ; Ruan, Kai ; Senturk, Mumine ; Grima, Jonathan C. ; Sung, Hyun ; Zuo, Zhongyuan ; Song, Helen ; Gao, Junli ; Dubey, Sandeep ; Rothstein, Jeffrey D. ; Zhang, Ke ; Bellen, Hugo J. ; Lloyd, Thomas E.</creatorcontrib><description>Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.59419</identifier><identifier>PMID: 33300868</identifier><language>eng</language><publisher>CAMBRIDGE: eLIFE SCIENCES PUBL LTD</publisher><subject>Active Transport, Cell Nucleus - genetics ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Animals ; autophagy ; Autophagy - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology ; Biology ; Blotting, Western ; c9orf72 ; C9orf72 Protein - genetics ; Cell Biology ; Cells ; Disease Models, Animal ; Drosophila ; Drosophila melanogaster ; Female ; Fluorescent Antibody Technique ; Frontotemporal Dementia - genetics ; HeLa Cells ; Humans ; Life Sciences & Biomedicine ; Life Sciences & Biomedicine - Other Topics ; lysosome ; Lysosomes - genetics ; Male ; Microphthalmia-Associated Transcription Factor - metabolism ; Microphthalmia-Associated Transcription Factor - physiology ; Microscopy, Electron, Transmission ; Motor Cortex - metabolism ; Nervous system diseases ; Neuroscience ; nuclear pore ; nucleocytoplasmic transport ; Science & Technology</subject><ispartof>eLife, 2020-12, Vol.9, Article 59419</ispartof><rights>2020, Cunningham et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Cunningham et al 2020 Cunningham et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>45</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000603344600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</citedby><cites>FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</cites><orcidid>0000-0002-1347-9087 ; 0000-0003-4756-3700 ; 0000-0001-5992-5989 ; 0000-0002-2012-9747 ; 0000-0002-4794-8355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758070/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758070/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33300868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cunningham, Kathleen M.</creatorcontrib><creatorcontrib>Maulding, Kirstin</creatorcontrib><creatorcontrib>Ruan, Kai</creatorcontrib><creatorcontrib>Senturk, Mumine</creatorcontrib><creatorcontrib>Grima, Jonathan C.</creatorcontrib><creatorcontrib>Sung, Hyun</creatorcontrib><creatorcontrib>Zuo, Zhongyuan</creatorcontrib><creatorcontrib>Song, Helen</creatorcontrib><creatorcontrib>Gao, Junli</creatorcontrib><creatorcontrib>Dubey, Sandeep</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><creatorcontrib>Lloyd, Thomas E.</creatorcontrib><title>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</title><title>eLife</title><addtitle>ELIFE</addtitle><addtitle>Elife</addtitle><description>Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.</description><subject>Active Transport, Cell Nucleus - genetics</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Animals</subject><subject>autophagy</subject><subject>Autophagy - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>c9orf72</subject><subject>C9orf72 Protein - genetics</subject><subject>Cell Biology</subject><subject>Cells</subject><subject>Disease Models, Animal</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Frontotemporal Dementia - genetics</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>lysosome</subject><subject>Lysosomes - genetics</subject><subject>Male</subject><subject>Microphthalmia-Associated Transcription Factor - metabolism</subject><subject>Microphthalmia-Associated Transcription Factor - physiology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Motor Cortex - metabolism</subject><subject>Nervous system diseases</subject><subject>Neuroscience</subject><subject>nuclear pore</subject><subject>nucleocytoplasmic transport</subject><subject>Science & Technology</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFv0zAUxiMEYtPYiTuKxAWE2tm14zgXpFJtUKkIiQ6Jm_XiPHceiV1iB9h_j9OOskocsA-2nn_-_D7ry7LnlEzLouAXuLIGp0XFafUoO52RgkyI5F8fP9ifZOch3JI0Si4lrZ5mJ4wxQqSQp9n6-ury3cVHG03eWvct5Lbbgu2xyd2gW4R-LPg-5tHnMES_vYGNb--CD76DNm_ughmcjta73Lp8UU3mq_Wz7ImBNuD5_XqWfbm6vF58mKw-vV8u5quJLriMEyg0lki1SY0wLIrS8KJhkmpBeEVmjUTacCYIliQ5nRnCykIawyrNKmgYZWfZcq_beLhV29520N8pD1btCr7fKOijTTYUBSYabXBmpOR1yWoupAAQkkJdc4Sk9XavtR3qDhuNLvbQHokenzh7ozb-hypTU6QkSeDVvUDvvw8Youps0Ni24NAPQc24qEjFuGQJfblHN5Bas874pKhHXM0FF5zSSo7upv-g0myws9o7NDbVjy68PrqQmIi_4gaGENRy_fmYfbNnde9D6NEcnFKixmCpXbDULliJfvHwcw7snxj9lfuJtTdBW3QaD1hKniCMcS7GEI6Py_-nFzbCGK-FH1xkvwEjRefX</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Cunningham, Kathleen M.</creator><creator>Maulding, Kirstin</creator><creator>Ruan, Kai</creator><creator>Senturk, Mumine</creator><creator>Grima, Jonathan C.</creator><creator>Sung, Hyun</creator><creator>Zuo, Zhongyuan</creator><creator>Song, Helen</creator><creator>Gao, Junli</creator><creator>Dubey, Sandeep</creator><creator>Rothstein, Jeffrey D.</creator><creator>Zhang, Ke</creator><creator>Bellen, Hugo J.</creator><creator>Lloyd, Thomas E.</creator><general>eLIFE SCIENCES PUBL LTD</general><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1347-9087</orcidid><orcidid>https://orcid.org/0000-0003-4756-3700</orcidid><orcidid>https://orcid.org/0000-0001-5992-5989</orcidid><orcidid>https://orcid.org/0000-0002-2012-9747</orcidid><orcidid>https://orcid.org/0000-0002-4794-8355</orcidid></search><sort><creationdate>20201210</creationdate><title>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</title><author>Cunningham, Kathleen M. ; Maulding, Kirstin ; Ruan, Kai ; Senturk, Mumine ; Grima, Jonathan C. ; Sung, Hyun ; Zuo, Zhongyuan ; Song, Helen ; Gao, Junli ; Dubey, Sandeep ; Rothstein, Jeffrey D. ; Zhang, Ke ; Bellen, Hugo J. ; Lloyd, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active Transport, Cell Nucleus - genetics</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Animals</topic><topic>autophagy</topic><topic>Autophagy - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>c9orf72</topic><topic>C9orf72 Protein - genetics</topic><topic>Cell Biology</topic><topic>Cells</topic><topic>Disease Models, Animal</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Frontotemporal Dementia - genetics</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>lysosome</topic><topic>Lysosomes - genetics</topic><topic>Male</topic><topic>Microphthalmia-Associated Transcription Factor - metabolism</topic><topic>Microphthalmia-Associated Transcription Factor - physiology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Motor Cortex - metabolism</topic><topic>Nervous system diseases</topic><topic>Neuroscience</topic><topic>nuclear pore</topic><topic>nucleocytoplasmic transport</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunningham, Kathleen M.</creatorcontrib><creatorcontrib>Maulding, Kirstin</creatorcontrib><creatorcontrib>Ruan, Kai</creatorcontrib><creatorcontrib>Senturk, Mumine</creatorcontrib><creatorcontrib>Grima, Jonathan C.</creatorcontrib><creatorcontrib>Sung, Hyun</creatorcontrib><creatorcontrib>Zuo, Zhongyuan</creatorcontrib><creatorcontrib>Song, Helen</creatorcontrib><creatorcontrib>Gao, Junli</creatorcontrib><creatorcontrib>Dubey, Sandeep</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><creatorcontrib>Lloyd, Thomas E.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunningham, Kathleen M.</au><au>Maulding, Kirstin</au><au>Ruan, Kai</au><au>Senturk, Mumine</au><au>Grima, Jonathan C.</au><au>Sung, Hyun</au><au>Zuo, Zhongyuan</au><au>Song, Helen</au><au>Gao, Junli</au><au>Dubey, Sandeep</au><au>Rothstein, Jeffrey D.</au><au>Zhang, Ke</au><au>Bellen, Hugo J.</au><au>Lloyd, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</atitle><jtitle>eLife</jtitle><stitle>ELIFE</stitle><addtitle>Elife</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>9</volume><artnum>59419</artnum><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.</abstract><cop>CAMBRIDGE</cop><pub>eLIFE SCIENCES PUBL LTD</pub><pmid>33300868</pmid><doi>10.7554/eLife.59419</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-1347-9087</orcidid><orcidid>https://orcid.org/0000-0003-4756-3700</orcidid><orcidid>https://orcid.org/0000-0001-5992-5989</orcidid><orcidid>https://orcid.org/0000-0002-2012-9747</orcidid><orcidid>https://orcid.org/0000-0002-4794-8355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2020-12, Vol.9, Article 59419 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_crossref_primary_10_7554_eLife_59419 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Active Transport, Cell Nucleus - genetics Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Animals autophagy Autophagy - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology Biology Blotting, Western c9orf72 C9orf72 Protein - genetics Cell Biology Cells Disease Models, Animal Drosophila Drosophila melanogaster Female Fluorescent Antibody Technique Frontotemporal Dementia - genetics HeLa Cells Humans Life Sciences & Biomedicine Life Sciences & Biomedicine - Other Topics lysosome Lysosomes - genetics Male Microphthalmia-Associated Transcription Factor - metabolism Microphthalmia-Associated Transcription Factor - physiology Microscopy, Electron, Transmission Motor Cortex - metabolism Nervous system diseases Neuroscience nuclear pore nucleocytoplasmic transport Science & Technology |
title | TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T15%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TFEB/Mitf%20links%20impaired%20nuclear%20import%20to%20autophagolysosomal%20dysfunction%20in%20C9-ALS&rft.jtitle=eLife&rft.au=Cunningham,%20Kathleen%20M.&rft.date=2020-12-10&rft.volume=9&rft.artnum=59419&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.59419&rft_dat=%3Cgale_cross%3EA646411981%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469093483&rft_id=info:pmid/33300868&rft_galeid=A646411981&rft_doaj_id=oai_doaj_org_article_1a36dcfe2f884b73b4686aa681abb4ea&rfr_iscdi=true |