TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS

Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2020-12, Vol.9, Article 59419
Hauptverfasser: Cunningham, Kathleen M., Maulding, Kirstin, Ruan, Kai, Senturk, Mumine, Grima, Jonathan C., Sung, Hyun, Zuo, Zhongyuan, Song, Helen, Gao, Junli, Dubey, Sandeep, Rothstein, Jeffrey D., Zhang, Ke, Bellen, Hugo J., Lloyd, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 9
creator Cunningham, Kathleen M.
Maulding, Kirstin
Ruan, Kai
Senturk, Mumine
Grima, Jonathan C.
Sung, Hyun
Zuo, Zhongyuan
Song, Helen
Gao, Junli
Dubey, Sandeep
Rothstein, Jeffrey D.
Zhang, Ke
Bellen, Hugo J.
Lloyd, Thomas E.
description Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.
doi_str_mv 10.7554/eLife.59419
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7554_eLife_59419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A646411981</galeid><doaj_id>oai_doaj_org_article_1a36dcfe2f884b73b4686aa681abb4ea</doaj_id><sourcerecordid>A646411981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</originalsourceid><addsrcrecordid>eNqNksFv0zAUxiMEYtPYiTuKxAWE2tm14zgXpFJtUKkIiQ6Jm_XiPHceiV1iB9h_j9OOskocsA-2nn_-_D7ry7LnlEzLouAXuLIGp0XFafUoO52RgkyI5F8fP9ifZOch3JI0Si4lrZ5mJ4wxQqSQp9n6-ury3cVHG03eWvct5Lbbgu2xyd2gW4R-LPg-5tHnMES_vYGNb--CD76DNm_ughmcjta73Lp8UU3mq_Wz7ImBNuD5_XqWfbm6vF58mKw-vV8u5quJLriMEyg0lki1SY0wLIrS8KJhkmpBeEVmjUTacCYIliQ5nRnCykIawyrNKmgYZWfZcq_beLhV29520N8pD1btCr7fKOijTTYUBSYabXBmpOR1yWoupAAQkkJdc4Sk9XavtR3qDhuNLvbQHokenzh7ozb-hypTU6QkSeDVvUDvvw8Youps0Ni24NAPQc24qEjFuGQJfblHN5Bas874pKhHXM0FF5zSSo7upv-g0myws9o7NDbVjy68PrqQmIi_4gaGENRy_fmYfbNnde9D6NEcnFKixmCpXbDULliJfvHwcw7snxj9lfuJtTdBW3QaD1hKniCMcS7GEI6Py_-nFzbCGK-FH1xkvwEjRefX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469093483</pqid></control><display><type>article</type><title>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cunningham, Kathleen M. ; Maulding, Kirstin ; Ruan, Kai ; Senturk, Mumine ; Grima, Jonathan C. ; Sung, Hyun ; Zuo, Zhongyuan ; Song, Helen ; Gao, Junli ; Dubey, Sandeep ; Rothstein, Jeffrey D. ; Zhang, Ke ; Bellen, Hugo J. ; Lloyd, Thomas E.</creator><creatorcontrib>Cunningham, Kathleen M. ; Maulding, Kirstin ; Ruan, Kai ; Senturk, Mumine ; Grima, Jonathan C. ; Sung, Hyun ; Zuo, Zhongyuan ; Song, Helen ; Gao, Junli ; Dubey, Sandeep ; Rothstein, Jeffrey D. ; Zhang, Ke ; Bellen, Hugo J. ; Lloyd, Thomas E.</creatorcontrib><description>Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.59419</identifier><identifier>PMID: 33300868</identifier><language>eng</language><publisher>CAMBRIDGE: eLIFE SCIENCES PUBL LTD</publisher><subject>Active Transport, Cell Nucleus - genetics ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Animals ; autophagy ; Autophagy - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology ; Biology ; Blotting, Western ; c9orf72 ; C9orf72 Protein - genetics ; Cell Biology ; Cells ; Disease Models, Animal ; Drosophila ; Drosophila melanogaster ; Female ; Fluorescent Antibody Technique ; Frontotemporal Dementia - genetics ; HeLa Cells ; Humans ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; lysosome ; Lysosomes - genetics ; Male ; Microphthalmia-Associated Transcription Factor - metabolism ; Microphthalmia-Associated Transcription Factor - physiology ; Microscopy, Electron, Transmission ; Motor Cortex - metabolism ; Nervous system diseases ; Neuroscience ; nuclear pore ; nucleocytoplasmic transport ; Science &amp; Technology</subject><ispartof>eLife, 2020-12, Vol.9, Article 59419</ispartof><rights>2020, Cunningham et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Cunningham et al 2020 Cunningham et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>45</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000603344600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</citedby><cites>FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</cites><orcidid>0000-0002-1347-9087 ; 0000-0003-4756-3700 ; 0000-0001-5992-5989 ; 0000-0002-2012-9747 ; 0000-0002-4794-8355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758070/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758070/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33300868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cunningham, Kathleen M.</creatorcontrib><creatorcontrib>Maulding, Kirstin</creatorcontrib><creatorcontrib>Ruan, Kai</creatorcontrib><creatorcontrib>Senturk, Mumine</creatorcontrib><creatorcontrib>Grima, Jonathan C.</creatorcontrib><creatorcontrib>Sung, Hyun</creatorcontrib><creatorcontrib>Zuo, Zhongyuan</creatorcontrib><creatorcontrib>Song, Helen</creatorcontrib><creatorcontrib>Gao, Junli</creatorcontrib><creatorcontrib>Dubey, Sandeep</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><creatorcontrib>Lloyd, Thomas E.</creatorcontrib><title>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</title><title>eLife</title><addtitle>ELIFE</addtitle><addtitle>Elife</addtitle><description>Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.</description><subject>Active Transport, Cell Nucleus - genetics</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Animals</subject><subject>autophagy</subject><subject>Autophagy - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>c9orf72</subject><subject>C9orf72 Protein - genetics</subject><subject>Cell Biology</subject><subject>Cells</subject><subject>Disease Models, Animal</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Frontotemporal Dementia - genetics</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>lysosome</subject><subject>Lysosomes - genetics</subject><subject>Male</subject><subject>Microphthalmia-Associated Transcription Factor - metabolism</subject><subject>Microphthalmia-Associated Transcription Factor - physiology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Motor Cortex - metabolism</subject><subject>Nervous system diseases</subject><subject>Neuroscience</subject><subject>nuclear pore</subject><subject>nucleocytoplasmic transport</subject><subject>Science &amp; Technology</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFv0zAUxiMEYtPYiTuKxAWE2tm14zgXpFJtUKkIiQ6Jm_XiPHceiV1iB9h_j9OOskocsA-2nn_-_D7ry7LnlEzLouAXuLIGp0XFafUoO52RgkyI5F8fP9ifZOch3JI0Si4lrZ5mJ4wxQqSQp9n6-ury3cVHG03eWvct5Lbbgu2xyd2gW4R-LPg-5tHnMES_vYGNb--CD76DNm_ughmcjta73Lp8UU3mq_Wz7ImBNuD5_XqWfbm6vF58mKw-vV8u5quJLriMEyg0lki1SY0wLIrS8KJhkmpBeEVmjUTacCYIliQ5nRnCykIawyrNKmgYZWfZcq_beLhV29520N8pD1btCr7fKOijTTYUBSYabXBmpOR1yWoupAAQkkJdc4Sk9XavtR3qDhuNLvbQHokenzh7ozb-hypTU6QkSeDVvUDvvw8Youps0Ni24NAPQc24qEjFuGQJfblHN5Bas874pKhHXM0FF5zSSo7upv-g0myws9o7NDbVjy68PrqQmIi_4gaGENRy_fmYfbNnde9D6NEcnFKixmCpXbDULliJfvHwcw7snxj9lfuJtTdBW3QaD1hKniCMcS7GEI6Py_-nFzbCGK-FH1xkvwEjRefX</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Cunningham, Kathleen M.</creator><creator>Maulding, Kirstin</creator><creator>Ruan, Kai</creator><creator>Senturk, Mumine</creator><creator>Grima, Jonathan C.</creator><creator>Sung, Hyun</creator><creator>Zuo, Zhongyuan</creator><creator>Song, Helen</creator><creator>Gao, Junli</creator><creator>Dubey, Sandeep</creator><creator>Rothstein, Jeffrey D.</creator><creator>Zhang, Ke</creator><creator>Bellen, Hugo J.</creator><creator>Lloyd, Thomas E.</creator><general>eLIFE SCIENCES PUBL LTD</general><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1347-9087</orcidid><orcidid>https://orcid.org/0000-0003-4756-3700</orcidid><orcidid>https://orcid.org/0000-0001-5992-5989</orcidid><orcidid>https://orcid.org/0000-0002-2012-9747</orcidid><orcidid>https://orcid.org/0000-0002-4794-8355</orcidid></search><sort><creationdate>20201210</creationdate><title>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</title><author>Cunningham, Kathleen M. ; Maulding, Kirstin ; Ruan, Kai ; Senturk, Mumine ; Grima, Jonathan C. ; Sung, Hyun ; Zuo, Zhongyuan ; Song, Helen ; Gao, Junli ; Dubey, Sandeep ; Rothstein, Jeffrey D. ; Zhang, Ke ; Bellen, Hugo J. ; Lloyd, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-a5ce7e1cf8683e557f45d381c604902d8e1d4360e705542f03758ff39c39ad313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active Transport, Cell Nucleus - genetics</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Animals</topic><topic>autophagy</topic><topic>Autophagy - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>c9orf72</topic><topic>C9orf72 Protein - genetics</topic><topic>Cell Biology</topic><topic>Cells</topic><topic>Disease Models, Animal</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Frontotemporal Dementia - genetics</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>lysosome</topic><topic>Lysosomes - genetics</topic><topic>Male</topic><topic>Microphthalmia-Associated Transcription Factor - metabolism</topic><topic>Microphthalmia-Associated Transcription Factor - physiology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Motor Cortex - metabolism</topic><topic>Nervous system diseases</topic><topic>Neuroscience</topic><topic>nuclear pore</topic><topic>nucleocytoplasmic transport</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunningham, Kathleen M.</creatorcontrib><creatorcontrib>Maulding, Kirstin</creatorcontrib><creatorcontrib>Ruan, Kai</creatorcontrib><creatorcontrib>Senturk, Mumine</creatorcontrib><creatorcontrib>Grima, Jonathan C.</creatorcontrib><creatorcontrib>Sung, Hyun</creatorcontrib><creatorcontrib>Zuo, Zhongyuan</creatorcontrib><creatorcontrib>Song, Helen</creatorcontrib><creatorcontrib>Gao, Junli</creatorcontrib><creatorcontrib>Dubey, Sandeep</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D.</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><creatorcontrib>Lloyd, Thomas E.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunningham, Kathleen M.</au><au>Maulding, Kirstin</au><au>Ruan, Kai</au><au>Senturk, Mumine</au><au>Grima, Jonathan C.</au><au>Sung, Hyun</au><au>Zuo, Zhongyuan</au><au>Song, Helen</au><au>Gao, Junli</au><au>Dubey, Sandeep</au><au>Rothstein, Jeffrey D.</au><au>Zhang, Ke</au><au>Bellen, Hugo J.</au><au>Lloyd, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS</atitle><jtitle>eLife</jtitle><stitle>ELIFE</stitle><addtitle>Elife</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>9</volume><artnum>59419</artnum><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-H RE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.</abstract><cop>CAMBRIDGE</cop><pub>eLIFE SCIENCES PUBL LTD</pub><pmid>33300868</pmid><doi>10.7554/eLife.59419</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-1347-9087</orcidid><orcidid>https://orcid.org/0000-0003-4756-3700</orcidid><orcidid>https://orcid.org/0000-0001-5992-5989</orcidid><orcidid>https://orcid.org/0000-0002-2012-9747</orcidid><orcidid>https://orcid.org/0000-0002-4794-8355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2020-12, Vol.9, Article 59419
issn 2050-084X
2050-084X
language eng
recordid cdi_crossref_primary_10_7554_eLife_59419
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Active Transport, Cell Nucleus - genetics
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Animals
autophagy
Autophagy - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology
Biology
Blotting, Western
c9orf72
C9orf72 Protein - genetics
Cell Biology
Cells
Disease Models, Animal
Drosophila
Drosophila melanogaster
Female
Fluorescent Antibody Technique
Frontotemporal Dementia - genetics
HeLa Cells
Humans
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
lysosome
Lysosomes - genetics
Male
Microphthalmia-Associated Transcription Factor - metabolism
Microphthalmia-Associated Transcription Factor - physiology
Microscopy, Electron, Transmission
Motor Cortex - metabolism
Nervous system diseases
Neuroscience
nuclear pore
nucleocytoplasmic transport
Science & Technology
title TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T15%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TFEB/Mitf%20links%20impaired%20nuclear%20import%20to%20autophagolysosomal%20dysfunction%20in%20C9-ALS&rft.jtitle=eLife&rft.au=Cunningham,%20Kathleen%20M.&rft.date=2020-12-10&rft.volume=9&rft.artnum=59419&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.59419&rft_dat=%3Cgale_cross%3EA646411981%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469093483&rft_id=info:pmid/33300868&rft_galeid=A646411981&rft_doaj_id=oai_doaj_org_article_1a36dcfe2f884b73b4686aa681abb4ea&rfr_iscdi=true