La prévision à l’aide des modèles ARMMI et d’information à priori

The method of ARIMA forecasting with benchmarks developed in this paper allows the production of univariate forecasts which take into account the historical information of a series, captured by an ARIMA model (Box and Jenkins, 1970), as well as partial prior information on the future behaviour of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actualité économique 1981, Vol.57 (4), p.553-564
1. Verfasser: Cholette, Pierre A.
Format: Artikel
Sprache:fre
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 4
container_start_page 553
container_title Actualité économique
container_volume 57
creator Cholette, Pierre A.
description The method of ARIMA forecasting with benchmarks developed in this paper allows the production of univariate forecasts which take into account the historical information of a series, captured by an ARIMA model (Box and Jenkins, 1970), as well as partial prior information on the future behaviour of the series. The prior information, or benchmarks, stems from the conclusions of a study on the phenomenon to be extrapolated, from forecasts of an annual econometric model or simply from pessimistic, realistic or optimistic scenarios contemplated by the current economic analyst. It may take the form of annual levels to be achieved, of neighbourhoods to be reached for a given time period, of movements to be displayed or more generally of any linear criteria to be satisfied by the forecasted values. By means of this method, the forecaster may then exercize his current economic evaluation and judgement to the fullest extent in deriving the forecasts, since the labouriousness and the "trial and errors" experienced without a systematic method are avoided.
doi_str_mv 10.7202/601006ar
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_7202_601006ar</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7202_601006ar</sourcerecordid><originalsourceid>FETCH-LOGICAL-c67r-77197abf1ea6a03bd61da777d72166d6445f75f907c25965caf98e1311e534cc3</originalsourceid><addsrcrecordid>eNo1UMtKxDAUDaJgGQf8hCzdVO9N2lyzHAYfAx0EmYW7kjYJBNrpkAyCO3_DnUv9jv6JX2IHx9U5cDgPDmOXCNckQNwoQABl4gnLkBByqTWesgwAMCfCl3M2Tyk0IKRUQiBkbFUZvovj92tIYdjy8ZN3P-8fJljHrUu8H-z41U1k8bxer7jbczvJYeuH2Jv90bGLYYjhgp150yU3P-KMbe7vNsvHvHp6WC0XVd4qiocVmkzj0RllQDZWoTVEZEmgUlYVRemp9BqoFaVWZWu8vnUoEV0pi7aVM3b1F9vGIaXofD3V9ya-1Qj14YT6_wT5CwySUiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>La prévision à l’aide des modèles ARMMI et d’information à priori</title><source>Érudit (Freely Accessible)</source><source>Érudit</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>REPÈRE - Free</source><creator>Cholette, Pierre A.</creator><creatorcontrib>Cholette, Pierre A.</creatorcontrib><description>The method of ARIMA forecasting with benchmarks developed in this paper allows the production of univariate forecasts which take into account the historical information of a series, captured by an ARIMA model (Box and Jenkins, 1970), as well as partial prior information on the future behaviour of the series. The prior information, or benchmarks, stems from the conclusions of a study on the phenomenon to be extrapolated, from forecasts of an annual econometric model or simply from pessimistic, realistic or optimistic scenarios contemplated by the current economic analyst. It may take the form of annual levels to be achieved, of neighbourhoods to be reached for a given time period, of movements to be displayed or more generally of any linear criteria to be satisfied by the forecasted values. By means of this method, the forecaster may then exercize his current economic evaluation and judgement to the fullest extent in deriving the forecasts, since the labouriousness and the "trial and errors" experienced without a systematic method are avoided.</description><identifier>ISSN: 0001-771X</identifier><identifier>EISSN: 1710-3991</identifier><identifier>DOI: 10.7202/601006ar</identifier><language>fre</language><ispartof>Actualité économique, 1981, Vol.57 (4), p.553-564</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c67r-77197abf1ea6a03bd61da777d72166d6445f75f907c25965caf98e1311e534cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Cholette, Pierre A.</creatorcontrib><title>La prévision à l’aide des modèles ARMMI et d’information à priori</title><title>Actualité économique</title><description>The method of ARIMA forecasting with benchmarks developed in this paper allows the production of univariate forecasts which take into account the historical information of a series, captured by an ARIMA model (Box and Jenkins, 1970), as well as partial prior information on the future behaviour of the series. The prior information, or benchmarks, stems from the conclusions of a study on the phenomenon to be extrapolated, from forecasts of an annual econometric model or simply from pessimistic, realistic or optimistic scenarios contemplated by the current economic analyst. It may take the form of annual levels to be achieved, of neighbourhoods to be reached for a given time period, of movements to be displayed or more generally of any linear criteria to be satisfied by the forecasted values. By means of this method, the forecaster may then exercize his current economic evaluation and judgement to the fullest extent in deriving the forecasts, since the labouriousness and the "trial and errors" experienced without a systematic method are avoided.</description><issn>0001-771X</issn><issn>1710-3991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNo1UMtKxDAUDaJgGQf8hCzdVO9N2lyzHAYfAx0EmYW7kjYJBNrpkAyCO3_DnUv9jv6JX2IHx9U5cDgPDmOXCNckQNwoQABl4gnLkBByqTWesgwAMCfCl3M2Tyk0IKRUQiBkbFUZvovj92tIYdjy8ZN3P-8fJljHrUu8H-z41U1k8bxer7jbczvJYeuH2Jv90bGLYYjhgp150yU3P-KMbe7vNsvHvHp6WC0XVd4qiocVmkzj0RllQDZWoTVEZEmgUlYVRemp9BqoFaVWZWu8vnUoEV0pi7aVM3b1F9vGIaXofD3V9ya-1Qj14YT6_wT5CwySUiI</recordid><startdate>1981</startdate><enddate>1981</enddate><creator>Cholette, Pierre A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1981</creationdate><title>La prévision à l’aide des modèles ARMMI et d’information à priori</title><author>Cholette, Pierre A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c67r-77197abf1ea6a03bd61da777d72166d6445f75f907c25965caf98e1311e534cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>fre</language><creationdate>1981</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Cholette, Pierre A.</creatorcontrib><collection>CrossRef</collection><jtitle>Actualité économique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cholette, Pierre A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>La prévision à l’aide des modèles ARMMI et d’information à priori</atitle><jtitle>Actualité économique</jtitle><date>1981</date><risdate>1981</risdate><volume>57</volume><issue>4</issue><spage>553</spage><epage>564</epage><pages>553-564</pages><issn>0001-771X</issn><eissn>1710-3991</eissn><abstract>The method of ARIMA forecasting with benchmarks developed in this paper allows the production of univariate forecasts which take into account the historical information of a series, captured by an ARIMA model (Box and Jenkins, 1970), as well as partial prior information on the future behaviour of the series. The prior information, or benchmarks, stems from the conclusions of a study on the phenomenon to be extrapolated, from forecasts of an annual econometric model or simply from pessimistic, realistic or optimistic scenarios contemplated by the current economic analyst. It may take the form of annual levels to be achieved, of neighbourhoods to be reached for a given time period, of movements to be displayed or more generally of any linear criteria to be satisfied by the forecasted values. By means of this method, the forecaster may then exercize his current economic evaluation and judgement to the fullest extent in deriving the forecasts, since the labouriousness and the "trial and errors" experienced without a systematic method are avoided.</abstract><doi>10.7202/601006ar</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-771X
ispartof Actualité économique, 1981, Vol.57 (4), p.553-564
issn 0001-771X
1710-3991
language fre
recordid cdi_crossref_primary_10_7202_601006ar
source Érudit (Freely Accessible); Érudit; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; REPÈRE - Free
title La prévision à l’aide des modèles ARMMI et d’information à priori
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=La%20pr%C3%A9vision%20%C3%A0%20l%E2%80%99aide%20des%20mod%C3%A8les%20ARMMI%20et%20d%E2%80%99information%20%C3%A0%20priori&rft.jtitle=Actualit%C3%A9%20%C3%A9conomique&rft.au=Cholette,%20Pierre%20A.&rft.date=1981&rft.volume=57&rft.issue=4&rft.spage=553&rft.epage=564&rft.pages=553-564&rft.issn=0001-771X&rft.eissn=1710-3991&rft_id=info:doi/10.7202/601006ar&rft_dat=%3Ccrossref%3E10_7202_601006ar%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true