Approximating the Bundled Crossing Number
Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to...
Gespeichert in:
Veröffentlicht in: | Journal of graph algorithms and applications 2023-07, Vol.27 (6), p.433-457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | 6 |
container_start_page | 433 |
container_title | Journal of graph algorithms and applications |
container_volume | 27 |
creator | Arroyo, Alan Felsner, Stefan |
description | Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole. |
doi_str_mv | 10.7155/jgaa.00629 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_7155_jgaa_00629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7155_jgaa_00629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1419-9822e36ceb0b97c88a398b8c5821061ef56e7ed9c6fb55bf1d2b3b37827f10ba3</originalsourceid><addsrcrecordid>eNpNj7tOAzEURC1EJEJCwxdsC9IGXxu_yrBKACmCBmrL13sdEuWxshMJ_j4sUFDNaIqZOYxdA58YUOpuvQxhwrkW7owNQQldgwF3_s9fsMtS1pwLKYwdsptp1-X952obDqvdsjp8UPVw3LUbaqsm70vpw5fjFimP2SCFTaGrPx2x9_nsrXmqF6-Pz810UUe4B1c7KwRJHQk5OhOtDdJZtFFZAVwDJaXJUOuiTqgUJmgFSpTGCpOAY5AjdvvbG_v9TMl3-fte_vLAfQ_pe0j_AylPj6xEXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximating the Bundled Crossing Number</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Arroyo, Alan ; Felsner, Stefan</creator><creatorcontrib>Arroyo, Alan ; Felsner, Stefan</creatorcontrib><description>Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole.</description><identifier>ISSN: 1526-1719</identifier><identifier>EISSN: 1526-1719</identifier><identifier>DOI: 10.7155/jgaa.00629</identifier><language>eng</language><ispartof>Journal of graph algorithms and applications, 2023-07, Vol.27 (6), p.433-457</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Arroyo, Alan</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><title>Approximating the Bundled Crossing Number</title><title>Journal of graph algorithms and applications</title><description>Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole.</description><issn>1526-1719</issn><issn>1526-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOAzEURC1EJEJCwxdsC9IGXxu_yrBKACmCBmrL13sdEuWxshMJ_j4sUFDNaIqZOYxdA58YUOpuvQxhwrkW7owNQQldgwF3_s9fsMtS1pwLKYwdsptp1-X952obDqvdsjp8UPVw3LUbaqsm70vpw5fjFimP2SCFTaGrPx2x9_nsrXmqF6-Pz810UUe4B1c7KwRJHQk5OhOtDdJZtFFZAVwDJaXJUOuiTqgUJmgFSpTGCpOAY5AjdvvbG_v9TMl3-fte_vLAfQ_pe0j_AylPj6xEXw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Arroyo, Alan</creator><creator>Felsner, Stefan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Approximating the Bundled Crossing Number</title><author>Arroyo, Alan ; Felsner, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1419-9822e36ceb0b97c88a398b8c5821061ef56e7ed9c6fb55bf1d2b3b37827f10ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arroyo, Alan</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph algorithms and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arroyo, Alan</au><au>Felsner, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the Bundled Crossing Number</atitle><jtitle>Journal of graph algorithms and applications</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>433</spage><epage>457</epage><pages>433-457</pages><issn>1526-1719</issn><eissn>1526-1719</eissn><abstract>Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole.</abstract><doi>10.7155/jgaa.00629</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-1719 |
ispartof | Journal of graph algorithms and applications, 2023-07, Vol.27 (6), p.433-457 |
issn | 1526-1719 1526-1719 |
language | eng |
recordid | cdi_crossref_primary_10_7155_jgaa_00629 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Approximating the Bundled Crossing Number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20Bundled%20Crossing%20Number&rft.jtitle=Journal%20of%20graph%20algorithms%20and%20applications&rft.au=Arroyo,%20Alan&rft.date=2023-07-01&rft.volume=27&rft.issue=6&rft.spage=433&rft.epage=457&rft.pages=433-457&rft.issn=1526-1719&rft.eissn=1526-1719&rft_id=info:doi/10.7155/jgaa.00629&rft_dat=%3Ccrossref%3E10_7155_jgaa_00629%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |