Approximating the Bundled Crossing Number

Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph algorithms and applications 2023-07, Vol.27 (6), p.433-457
Hauptverfasser: Arroyo, Alan, Felsner, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 6
container_start_page 433
container_title Journal of graph algorithms and applications
container_volume 27
creator Arroyo, Alan
Felsner, Stefan
description Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole.
doi_str_mv 10.7155/jgaa.00629
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_7155_jgaa_00629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7155_jgaa_00629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1419-9822e36ceb0b97c88a398b8c5821061ef56e7ed9c6fb55bf1d2b3b37827f10ba3</originalsourceid><addsrcrecordid>eNpNj7tOAzEURC1EJEJCwxdsC9IGXxu_yrBKACmCBmrL13sdEuWxshMJ_j4sUFDNaIqZOYxdA58YUOpuvQxhwrkW7owNQQldgwF3_s9fsMtS1pwLKYwdsptp1-X952obDqvdsjp8UPVw3LUbaqsm70vpw5fjFimP2SCFTaGrPx2x9_nsrXmqF6-Pz810UUe4B1c7KwRJHQk5OhOtDdJZtFFZAVwDJaXJUOuiTqgUJmgFSpTGCpOAY5AjdvvbG_v9TMl3-fte_vLAfQ_pe0j_AylPj6xEXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximating the Bundled Crossing Number</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Arroyo, Alan ; Felsner, Stefan</creator><creatorcontrib>Arroyo, Alan ; Felsner, Stefan</creatorcontrib><description>Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole.</description><identifier>ISSN: 1526-1719</identifier><identifier>EISSN: 1526-1719</identifier><identifier>DOI: 10.7155/jgaa.00629</identifier><language>eng</language><ispartof>Journal of graph algorithms and applications, 2023-07, Vol.27 (6), p.433-457</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Arroyo, Alan</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><title>Approximating the Bundled Crossing Number</title><title>Journal of graph algorithms and applications</title><description>Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole.</description><issn>1526-1719</issn><issn>1526-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOAzEURC1EJEJCwxdsC9IGXxu_yrBKACmCBmrL13sdEuWxshMJ_j4sUFDNaIqZOYxdA58YUOpuvQxhwrkW7owNQQldgwF3_s9fsMtS1pwLKYwdsptp1-X952obDqvdsjp8UPVw3LUbaqsm70vpw5fjFimP2SCFTaGrPx2x9_nsrXmqF6-Pz810UUe4B1c7KwRJHQk5OhOtDdJZtFFZAVwDJaXJUOuiTqgUJmgFSpTGCpOAY5AjdvvbG_v9TMl3-fte_vLAfQ_pe0j_AylPj6xEXw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Arroyo, Alan</creator><creator>Felsner, Stefan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Approximating the Bundled Crossing Number</title><author>Arroyo, Alan ; Felsner, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1419-9822e36ceb0b97c88a398b8c5821061ef56e7ed9c6fb55bf1d2b3b37827f10ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arroyo, Alan</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph algorithms and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arroyo, Alan</au><au>Felsner, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the Bundled Crossing Number</atitle><jtitle>Journal of graph algorithms and applications</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>433</spage><epage>457</epage><pages>433-457</pages><issn>1526-1719</issn><eissn>1526-1719</eissn><abstract>Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al.[Fink et al., LATIN 2016]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a $\frac{9}{2}$-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole.</abstract><doi>10.7155/jgaa.00629</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1719
ispartof Journal of graph algorithms and applications, 2023-07, Vol.27 (6), p.433-457
issn 1526-1719
1526-1719
language eng
recordid cdi_crossref_primary_10_7155_jgaa_00629
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Approximating the Bundled Crossing Number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20Bundled%20Crossing%20Number&rft.jtitle=Journal%20of%20graph%20algorithms%20and%20applications&rft.au=Arroyo,%20Alan&rft.date=2023-07-01&rft.volume=27&rft.issue=6&rft.spage=433&rft.epage=457&rft.pages=433-457&rft.issn=1526-1719&rft.eissn=1526-1719&rft_id=info:doi/10.7155/jgaa.00629&rft_dat=%3Ccrossref%3E10_7155_jgaa_00629%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true