Comparative biodistribution analysis across four different 89 Zr-monoclonal antibody tracers-The first step towards an imaging warehouse

Knowledge on monoclonal antibody biodistribution in healthy tissues in humans can support clinical drug development. Molecular imaging with positron emission tomography (PET) can yield information in this setting. However, recent imaging studies have analyzed the behavior of single antibodies only,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theranostics 2018, Vol.8 (16), p.4295-4304
Hauptverfasser: Bensch, Frederike, Smeenk, Michaël M, van Es, Suzanne C, de Jong, Johan R, Schröder, Carolina P, Oosting, Sjoukje F, Lub-de Hooge, Marjolijn N, Menke-van der Houven van Oordt, C Willemien, Brouwers, Adrienne H, Boellaard, Ronald, de Vries, Elisabeth G E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4304
container_issue 16
container_start_page 4295
container_title Theranostics
container_volume 8
creator Bensch, Frederike
Smeenk, Michaël M
van Es, Suzanne C
de Jong, Johan R
Schröder, Carolina P
Oosting, Sjoukje F
Lub-de Hooge, Marjolijn N
Menke-van der Houven van Oordt, C Willemien
Brouwers, Adrienne H
Boellaard, Ronald
de Vries, Elisabeth G E
description Knowledge on monoclonal antibody biodistribution in healthy tissues in humans can support clinical drug development. Molecular imaging with positron emission tomography (PET) can yield information in this setting. However, recent imaging studies have analyzed the behavior of single antibodies only, neglecting comparison across different antibodies. We compared the distribution of four Zr-labeled antibodies in healthy tissue in a retrospective analysis based on the recently published harmonization protocol for Zr-tracers and our delineation protocol. The biodistribution patterns of Zr-lumretuzumab, Zr-MMOT0530A, Zr-bevacizumab and Zr-trastuzumab on day 4 after tracer injection were largely similar. The highest tracer concentration was seen in healthy liver, spleen, kidney and intestines. About one-third of the injected tracer dose was found in the circulation, up to 15% in the liver and only 4% in the spleen and kidney. Lower tracer concentration was seen in bone marrow, lung, compact bone, muscle, fat and the brain. Despite low tracer accumulation per gram of tissue, large-volume tissues, especially fat, can influence overall distribution: On average, 5-7% of the injected tracer dose accumulated in fat, with a peak of 19% in a patient with morbid obesity. The similar biodistribution of the four antibodies is probably based on their similar molecular structure, binding characteristics and similar metabolic pathways. These data provide a basis for a prospectively growing, online accessible warehouse of molecular imaging data, which enables researchers to increase and exchange knowledge on whole body drug distribution and potentially supports drug development decisions.
doi_str_mv 10.7150/thno.26370
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7150_thno_26370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30214621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c991-ba0c74fd2790f65a6008e4bcce5e07e9a2cb1527bcdff9ba42edcda4272b2e763</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMottRe_AGSs7A1yX5kc5TiFxS89ORlycekjXQ3S5JV-g_82W5bFefyDsPDMPMgdE3JgtOS3KVt5xesyjk5Q1Na53XGq4Kc_-snaB7jOxmrIExQcYkmOWG0qBidoq-lb3sZZHIfgJXzxsUUnBqS8x2Wndzto4tY6uBjxNYPARtnLQToEq4FfgtZ6zuvd35ERz455c0epyA1hJitt4CtCzHhmKDHyX_KYMZ1HXat3Lhug8cBbP0Q4QpdWLmLMP_JGVo_PqyXz9nq9elleb_KtBA0U5JoXljDuCC2KmVFSA2F0hpKIByEZFrRknGljbVCyYKB0WYMzhQDXuUzdHtae_wogG36MN4S9g0lzUFocxDaHIWO8M0J7gfVgvlDf_Xl37Brdf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative biodistribution analysis across four different 89 Zr-monoclonal antibody tracers-The first step towards an imaging warehouse</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bensch, Frederike ; Smeenk, Michaël M ; van Es, Suzanne C ; de Jong, Johan R ; Schröder, Carolina P ; Oosting, Sjoukje F ; Lub-de Hooge, Marjolijn N ; Menke-van der Houven van Oordt, C Willemien ; Brouwers, Adrienne H ; Boellaard, Ronald ; de Vries, Elisabeth G E</creator><creatorcontrib>Bensch, Frederike ; Smeenk, Michaël M ; van Es, Suzanne C ; de Jong, Johan R ; Schröder, Carolina P ; Oosting, Sjoukje F ; Lub-de Hooge, Marjolijn N ; Menke-van der Houven van Oordt, C Willemien ; Brouwers, Adrienne H ; Boellaard, Ronald ; de Vries, Elisabeth G E</creatorcontrib><description>Knowledge on monoclonal antibody biodistribution in healthy tissues in humans can support clinical drug development. Molecular imaging with positron emission tomography (PET) can yield information in this setting. However, recent imaging studies have analyzed the behavior of single antibodies only, neglecting comparison across different antibodies. We compared the distribution of four Zr-labeled antibodies in healthy tissue in a retrospective analysis based on the recently published harmonization protocol for Zr-tracers and our delineation protocol. The biodistribution patterns of Zr-lumretuzumab, Zr-MMOT0530A, Zr-bevacizumab and Zr-trastuzumab on day 4 after tracer injection were largely similar. The highest tracer concentration was seen in healthy liver, spleen, kidney and intestines. About one-third of the injected tracer dose was found in the circulation, up to 15% in the liver and only 4% in the spleen and kidney. Lower tracer concentration was seen in bone marrow, lung, compact bone, muscle, fat and the brain. Despite low tracer accumulation per gram of tissue, large-volume tissues, especially fat, can influence overall distribution: On average, 5-7% of the injected tracer dose accumulated in fat, with a peak of 19% in a patient with morbid obesity. The similar biodistribution of the four antibodies is probably based on their similar molecular structure, binding characteristics and similar metabolic pathways. These data provide a basis for a prospectively growing, online accessible warehouse of molecular imaging data, which enables researchers to increase and exchange knowledge on whole body drug distribution and potentially supports drug development decisions.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.26370</identifier><identifier>PMID: 30214621</identifier><language>eng</language><publisher>Australia</publisher><ispartof>Theranostics, 2018, Vol.8 (16), p.4295-4304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c991-ba0c74fd2790f65a6008e4bcce5e07e9a2cb1527bcdff9ba42edcda4272b2e763</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30214621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bensch, Frederike</creatorcontrib><creatorcontrib>Smeenk, Michaël M</creatorcontrib><creatorcontrib>van Es, Suzanne C</creatorcontrib><creatorcontrib>de Jong, Johan R</creatorcontrib><creatorcontrib>Schröder, Carolina P</creatorcontrib><creatorcontrib>Oosting, Sjoukje F</creatorcontrib><creatorcontrib>Lub-de Hooge, Marjolijn N</creatorcontrib><creatorcontrib>Menke-van der Houven van Oordt, C Willemien</creatorcontrib><creatorcontrib>Brouwers, Adrienne H</creatorcontrib><creatorcontrib>Boellaard, Ronald</creatorcontrib><creatorcontrib>de Vries, Elisabeth G E</creatorcontrib><title>Comparative biodistribution analysis across four different 89 Zr-monoclonal antibody tracers-The first step towards an imaging warehouse</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>Knowledge on monoclonal antibody biodistribution in healthy tissues in humans can support clinical drug development. Molecular imaging with positron emission tomography (PET) can yield information in this setting. However, recent imaging studies have analyzed the behavior of single antibodies only, neglecting comparison across different antibodies. We compared the distribution of four Zr-labeled antibodies in healthy tissue in a retrospective analysis based on the recently published harmonization protocol for Zr-tracers and our delineation protocol. The biodistribution patterns of Zr-lumretuzumab, Zr-MMOT0530A, Zr-bevacizumab and Zr-trastuzumab on day 4 after tracer injection were largely similar. The highest tracer concentration was seen in healthy liver, spleen, kidney and intestines. About one-third of the injected tracer dose was found in the circulation, up to 15% in the liver and only 4% in the spleen and kidney. Lower tracer concentration was seen in bone marrow, lung, compact bone, muscle, fat and the brain. Despite low tracer accumulation per gram of tissue, large-volume tissues, especially fat, can influence overall distribution: On average, 5-7% of the injected tracer dose accumulated in fat, with a peak of 19% in a patient with morbid obesity. The similar biodistribution of the four antibodies is probably based on their similar molecular structure, binding characteristics and similar metabolic pathways. These data provide a basis for a prospectively growing, online accessible warehouse of molecular imaging data, which enables researchers to increase and exchange knowledge on whole body drug distribution and potentially supports drug development decisions.</description><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMottRe_AGSs7A1yX5kc5TiFxS89ORlycekjXQ3S5JV-g_82W5bFefyDsPDMPMgdE3JgtOS3KVt5xesyjk5Q1Na53XGq4Kc_-snaB7jOxmrIExQcYkmOWG0qBidoq-lb3sZZHIfgJXzxsUUnBqS8x2Wndzto4tY6uBjxNYPARtnLQToEq4FfgtZ6zuvd35ERz455c0epyA1hJitt4CtCzHhmKDHyX_KYMZ1HXat3Lhug8cBbP0Q4QpdWLmLMP_JGVo_PqyXz9nq9elleb_KtBA0U5JoXljDuCC2KmVFSA2F0hpKIByEZFrRknGljbVCyYKB0WYMzhQDXuUzdHtae_wogG36MN4S9g0lzUFocxDaHIWO8M0J7gfVgvlDf_Xl37Brdf8</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Bensch, Frederike</creator><creator>Smeenk, Michaël M</creator><creator>van Es, Suzanne C</creator><creator>de Jong, Johan R</creator><creator>Schröder, Carolina P</creator><creator>Oosting, Sjoukje F</creator><creator>Lub-de Hooge, Marjolijn N</creator><creator>Menke-van der Houven van Oordt, C Willemien</creator><creator>Brouwers, Adrienne H</creator><creator>Boellaard, Ronald</creator><creator>de Vries, Elisabeth G E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Comparative biodistribution analysis across four different 89 Zr-monoclonal antibody tracers-The first step towards an imaging warehouse</title><author>Bensch, Frederike ; Smeenk, Michaël M ; van Es, Suzanne C ; de Jong, Johan R ; Schröder, Carolina P ; Oosting, Sjoukje F ; Lub-de Hooge, Marjolijn N ; Menke-van der Houven van Oordt, C Willemien ; Brouwers, Adrienne H ; Boellaard, Ronald ; de Vries, Elisabeth G E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c991-ba0c74fd2790f65a6008e4bcce5e07e9a2cb1527bcdff9ba42edcda4272b2e763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensch, Frederike</creatorcontrib><creatorcontrib>Smeenk, Michaël M</creatorcontrib><creatorcontrib>van Es, Suzanne C</creatorcontrib><creatorcontrib>de Jong, Johan R</creatorcontrib><creatorcontrib>Schröder, Carolina P</creatorcontrib><creatorcontrib>Oosting, Sjoukje F</creatorcontrib><creatorcontrib>Lub-de Hooge, Marjolijn N</creatorcontrib><creatorcontrib>Menke-van der Houven van Oordt, C Willemien</creatorcontrib><creatorcontrib>Brouwers, Adrienne H</creatorcontrib><creatorcontrib>Boellaard, Ronald</creatorcontrib><creatorcontrib>de Vries, Elisabeth G E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensch, Frederike</au><au>Smeenk, Michaël M</au><au>van Es, Suzanne C</au><au>de Jong, Johan R</au><au>Schröder, Carolina P</au><au>Oosting, Sjoukje F</au><au>Lub-de Hooge, Marjolijn N</au><au>Menke-van der Houven van Oordt, C Willemien</au><au>Brouwers, Adrienne H</au><au>Boellaard, Ronald</au><au>de Vries, Elisabeth G E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative biodistribution analysis across four different 89 Zr-monoclonal antibody tracers-The first step towards an imaging warehouse</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2018</date><risdate>2018</risdate><volume>8</volume><issue>16</issue><spage>4295</spage><epage>4304</epage><pages>4295-4304</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Knowledge on monoclonal antibody biodistribution in healthy tissues in humans can support clinical drug development. Molecular imaging with positron emission tomography (PET) can yield information in this setting. However, recent imaging studies have analyzed the behavior of single antibodies only, neglecting comparison across different antibodies. We compared the distribution of four Zr-labeled antibodies in healthy tissue in a retrospective analysis based on the recently published harmonization protocol for Zr-tracers and our delineation protocol. The biodistribution patterns of Zr-lumretuzumab, Zr-MMOT0530A, Zr-bevacizumab and Zr-trastuzumab on day 4 after tracer injection were largely similar. The highest tracer concentration was seen in healthy liver, spleen, kidney and intestines. About one-third of the injected tracer dose was found in the circulation, up to 15% in the liver and only 4% in the spleen and kidney. Lower tracer concentration was seen in bone marrow, lung, compact bone, muscle, fat and the brain. Despite low tracer accumulation per gram of tissue, large-volume tissues, especially fat, can influence overall distribution: On average, 5-7% of the injected tracer dose accumulated in fat, with a peak of 19% in a patient with morbid obesity. The similar biodistribution of the four antibodies is probably based on their similar molecular structure, binding characteristics and similar metabolic pathways. These data provide a basis for a prospectively growing, online accessible warehouse of molecular imaging data, which enables researchers to increase and exchange knowledge on whole body drug distribution and potentially supports drug development decisions.</abstract><cop>Australia</cop><pmid>30214621</pmid><doi>10.7150/thno.26370</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1838-7640
ispartof Theranostics, 2018, Vol.8 (16), p.4295-4304
issn 1838-7640
1838-7640
language eng
recordid cdi_crossref_primary_10_7150_thno_26370
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Comparative biodistribution analysis across four different 89 Zr-monoclonal antibody tracers-The first step towards an imaging warehouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20biodistribution%20analysis%20across%20four%20different%2089%20Zr-monoclonal%20antibody%20tracers-The%20first%20step%20towards%20an%20imaging%20warehouse&rft.jtitle=Theranostics&rft.au=Bensch,%20Frederike&rft.date=2018&rft.volume=8&rft.issue=16&rft.spage=4295&rft.epage=4304&rft.pages=4295-4304&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.26370&rft_dat=%3Cpubmed_cross%3E30214621%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30214621&rfr_iscdi=true