Topological Completeness for Higher-Order Logic

Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BRICS Report Series 1997-01, Vol.4 (21)
Hauptverfasser: Awodey, Steve, Butz, Carsten
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title BRICS Report Series
container_volume 4
creator Awodey, Steve
Butz, Carsten
description Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the second system is a predicative fragment thereof with quantification over functions between types, but not over arbitrary relations. The second theorem applies to intuitionistic as well as classical logic.
doi_str_mv 10.7146/brics.v4i21.18947
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_7146_brics_v4i21_18947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7146_brics_v4i21_18947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1337-d28b47ca51019d5bdfd3812bc002c26ae73dd3d331af7cf7e860a44eed8014123</originalsourceid><addsrcrecordid>eNotz91KwzAYxvEgCitzF-BZbyDd-yZpkx5KUScUdjKPQ5qPLdCZkojg3cuqR8_Jnwd-hDwhNBJFt59ytKX5FpFhg6oX8o5U2AHSlrftPamgh56CkmpDdqXECRgTSsmeV2R_Skua0zlaM9dDui6z__KfvpQ6pFwf4vniMz1m53M93qpH8hDMXPzuf7fk4_XlNBzoeHx7H55HapFzSR1Tk5DWtAjYu3ZywXGFbLIAzLLOeMmd445zNEHaIL3qwAjhvVOAAhnfEvz7tTmVkn3QS45Xk380gr6h9YrWK1qvaP4LoUFL8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological Completeness for Higher-Order Logic</title><source>tidsskrift.dk</source><creator>Awodey, Steve ; Butz, Carsten</creator><creatorcontrib>Awodey, Steve ; Butz, Carsten</creatorcontrib><description>Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the second system is a predicative fragment thereof with quantification over functions between types, but not over arbitrary relations. The second theorem applies to intuitionistic as well as classical logic.</description><identifier>ISSN: 0909-0878</identifier><identifier>EISSN: 1601-5355</identifier><identifier>DOI: 10.7146/brics.v4i21.18947</identifier><language>eng</language><ispartof>BRICS Report Series, 1997-01, Vol.4 (21)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1337-d28b47ca51019d5bdfd3812bc002c26ae73dd3d331af7cf7e860a44eed8014123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Awodey, Steve</creatorcontrib><creatorcontrib>Butz, Carsten</creatorcontrib><title>Topological Completeness for Higher-Order Logic</title><title>BRICS Report Series</title><description>Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the second system is a predicative fragment thereof with quantification over functions between types, but not over arbitrary relations. The second theorem applies to intuitionistic as well as classical logic.</description><issn>0909-0878</issn><issn>1601-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNotz91KwzAYxvEgCitzF-BZbyDd-yZpkx5KUScUdjKPQ5qPLdCZkojg3cuqR8_Jnwd-hDwhNBJFt59ytKX5FpFhg6oX8o5U2AHSlrftPamgh56CkmpDdqXECRgTSsmeV2R_Skua0zlaM9dDui6z__KfvpQ6pFwf4vniMz1m53M93qpH8hDMXPzuf7fk4_XlNBzoeHx7H55HapFzSR1Tk5DWtAjYu3ZywXGFbLIAzLLOeMmd445zNEHaIL3qwAjhvVOAAhnfEvz7tTmVkn3QS45Xk380gr6h9YrWK1qvaP4LoUFL8Q</recordid><startdate>19970121</startdate><enddate>19970121</enddate><creator>Awodey, Steve</creator><creator>Butz, Carsten</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970121</creationdate><title>Topological Completeness for Higher-Order Logic</title><author>Awodey, Steve ; Butz, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1337-d28b47ca51019d5bdfd3812bc002c26ae73dd3d331af7cf7e860a44eed8014123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Awodey, Steve</creatorcontrib><creatorcontrib>Butz, Carsten</creatorcontrib><collection>CrossRef</collection><jtitle>BRICS Report Series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awodey, Steve</au><au>Butz, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Completeness for Higher-Order Logic</atitle><jtitle>BRICS Report Series</jtitle><date>1997-01-21</date><risdate>1997</risdate><volume>4</volume><issue>21</issue><issn>0909-0878</issn><eissn>1601-5355</eissn><abstract>Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the second system is a predicative fragment thereof with quantification over functions between types, but not over arbitrary relations. The second theorem applies to intuitionistic as well as classical logic.</abstract><doi>10.7146/brics.v4i21.18947</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0909-0878
ispartof BRICS Report Series, 1997-01, Vol.4 (21)
issn 0909-0878
1601-5355
language eng
recordid cdi_crossref_primary_10_7146_brics_v4i21_18947
source tidsskrift.dk
title Topological Completeness for Higher-Order Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Completeness%20for%20Higher-Order%20Logic&rft.jtitle=BRICS%20Report%20Series&rft.au=Awodey,%20Steve&rft.date=1997-01-21&rft.volume=4&rft.issue=21&rft.issn=0909-0878&rft.eissn=1601-5355&rft_id=info:doi/10.7146/brics.v4i21.18947&rft_dat=%3Ccrossref%3E10_7146_brics_v4i21_18947%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true