Complexity of Nondeterministic Functions

The complexity of a nondeterministic function is the minimum possible complexity of its determinisation. The entropy of a nondeterministic function, F, is minus the logarithm of the ratio between the number of determinisations of F and the number of all deterministic functions. We obtain an upper bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BRICS Report Series 1994-02, Vol.1 (2)
1. Verfasser: Andreev, Alexander E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title BRICS Report Series
container_volume 1
creator Andreev, Alexander E.
description The complexity of a nondeterministic function is the minimum possible complexity of its determinisation. The entropy of a nondeterministic function, F, is minus the logarithm of the ratio between the number of determinisations of F and the number of all deterministic functions. We obtain an upper bound on the complexity of a nondeterministic function with restricted entropy for the worst case. These bounds have strong applications in the problem of algorithm derandomization. A lot of randomized algorithms can be converted to deterministic ones if we have an effective hitting set with certain parameters (a set is hitting for a set system if it has a nonempty intersection with any set from the system). Linial, Luby, Saks and Zuckerman (1993) constructed the best effective hitting set for the system of k-value, n-dimensional rectangles. The set size is polynomial in k log n / epsilon. Our bounds of nondeterministic functions complexity offer a possibility to construct an effective hitting set for this system with almost linear size in k log n / epsilon.
doi_str_mv 10.7146/brics.v1i2.21668
format Article
fullrecord <record><control><sourceid>statsbiblioteket_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7146_brics_v1i2_21668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1868-9e06a5b339d41edbc49523da28b661be5c6c6f2ec98fddfccc999f53eebdfc013</originalsourceid><addsrcrecordid>eNotz0tLAzEUBeAgCpbavcsu3UzNYyZNViLFWqHoRtchjxu4djopSRT77-1rdTiLc-Aj5J7R2Zy18tFl9GX2y5DPOJNSXZERk5Q1nei6azKimuqGqrm6JZNS0FHOW6XmWozIwyJtdz38Yd1PU5y-pyFAhbzFAUtFP13-DL5iGsoduYm2LzC55Jh8LV8-F6tm_fH6tnheN54pqRoNVNrOCaFDyyA43-qOi2C5clIyB52XXkYOXqsYQvTea61jJwDcoVEmxoSef31OpWSIZpdxa_PeMGqOWHPCmiPWnLCHydN5UqqtxaHrMVXYQDXpu5hk8ZQVQymbjLGasDE2H3Q9XB7-AdwhYyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complexity of Nondeterministic Functions</title><source>tidsskrift.dk</source><creator>Andreev, Alexander E.</creator><creatorcontrib>Andreev, Alexander E.</creatorcontrib><description>The complexity of a nondeterministic function is the minimum possible complexity of its determinisation. The entropy of a nondeterministic function, F, is minus the logarithm of the ratio between the number of determinisations of F and the number of all deterministic functions. We obtain an upper bound on the complexity of a nondeterministic function with restricted entropy for the worst case. These bounds have strong applications in the problem of algorithm derandomization. A lot of randomized algorithms can be converted to deterministic ones if we have an effective hitting set with certain parameters (a set is hitting for a set system if it has a nonempty intersection with any set from the system). Linial, Luby, Saks and Zuckerman (1993) constructed the best effective hitting set for the system of k-value, n-dimensional rectangles. The set size is polynomial in k log n / epsilon. Our bounds of nondeterministic functions complexity offer a possibility to construct an effective hitting set for this system with almost linear size in k log n / epsilon.</description><identifier>ISSN: 0909-0878</identifier><identifier>EISSN: 1601-5355</identifier><identifier>DOI: 10.7146/brics.v1i2.21668</identifier><language>eng</language><publisher>Aarhus University</publisher><ispartof>BRICS Report Series, 1994-02, Vol.1 (2)</ispartof><rights>Copyright (c) 2015 BRICS Report Series</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1868-9e06a5b339d41edbc49523da28b661be5c6c6f2ec98fddfccc999f53eebdfc013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Andreev, Alexander E.</creatorcontrib><title>Complexity of Nondeterministic Functions</title><title>BRICS Report Series</title><addtitle>BRICS</addtitle><description>The complexity of a nondeterministic function is the minimum possible complexity of its determinisation. The entropy of a nondeterministic function, F, is minus the logarithm of the ratio between the number of determinisations of F and the number of all deterministic functions. We obtain an upper bound on the complexity of a nondeterministic function with restricted entropy for the worst case. These bounds have strong applications in the problem of algorithm derandomization. A lot of randomized algorithms can be converted to deterministic ones if we have an effective hitting set with certain parameters (a set is hitting for a set system if it has a nonempty intersection with any set from the system). Linial, Luby, Saks and Zuckerman (1993) constructed the best effective hitting set for the system of k-value, n-dimensional rectangles. The set size is polynomial in k log n / epsilon. Our bounds of nondeterministic functions complexity offer a possibility to construct an effective hitting set for this system with almost linear size in k log n / epsilon.</description><issn>0909-0878</issn><issn>1601-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>5R1</sourceid><recordid>eNotz0tLAzEUBeAgCpbavcsu3UzNYyZNViLFWqHoRtchjxu4djopSRT77-1rdTiLc-Aj5J7R2Zy18tFl9GX2y5DPOJNSXZERk5Q1nei6azKimuqGqrm6JZNS0FHOW6XmWozIwyJtdz38Yd1PU5y-pyFAhbzFAUtFP13-DL5iGsoduYm2LzC55Jh8LV8-F6tm_fH6tnheN54pqRoNVNrOCaFDyyA43-qOi2C5clIyB52XXkYOXqsYQvTea61jJwDcoVEmxoSef31OpWSIZpdxa_PeMGqOWHPCmiPWnLCHydN5UqqtxaHrMVXYQDXpu5hk8ZQVQymbjLGasDE2H3Q9XB7-AdwhYyA</recordid><startdate>19940203</startdate><enddate>19940203</enddate><creator>Andreev, Alexander E.</creator><general>Aarhus University</general><scope>5R1</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940203</creationdate><title>Complexity of Nondeterministic Functions</title><author>Andreev, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1868-9e06a5b339d41edbc49523da28b661be5c6c6f2ec98fddfccc999f53eebdfc013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Andreev, Alexander E.</creatorcontrib><collection>tidsskrift.dk</collection><collection>CrossRef</collection><jtitle>BRICS Report Series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, Alexander E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of Nondeterministic Functions</atitle><jtitle>BRICS Report Series</jtitle><stitle>BRICS</stitle><date>1994-02-03</date><risdate>1994</risdate><volume>1</volume><issue>2</issue><issn>0909-0878</issn><eissn>1601-5355</eissn><abstract>The complexity of a nondeterministic function is the minimum possible complexity of its determinisation. The entropy of a nondeterministic function, F, is minus the logarithm of the ratio between the number of determinisations of F and the number of all deterministic functions. We obtain an upper bound on the complexity of a nondeterministic function with restricted entropy for the worst case. These bounds have strong applications in the problem of algorithm derandomization. A lot of randomized algorithms can be converted to deterministic ones if we have an effective hitting set with certain parameters (a set is hitting for a set system if it has a nonempty intersection with any set from the system). Linial, Luby, Saks and Zuckerman (1993) constructed the best effective hitting set for the system of k-value, n-dimensional rectangles. The set size is polynomial in k log n / epsilon. Our bounds of nondeterministic functions complexity offer a possibility to construct an effective hitting set for this system with almost linear size in k log n / epsilon.</abstract><pub>Aarhus University</pub><doi>10.7146/brics.v1i2.21668</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0909-0878
ispartof BRICS Report Series, 1994-02, Vol.1 (2)
issn 0909-0878
1601-5355
language eng
recordid cdi_crossref_primary_10_7146_brics_v1i2_21668
source tidsskrift.dk
title Complexity of Nondeterministic Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-statsbiblioteket_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20Nondeterministic%20Functions&rft.jtitle=BRICS%20Report%20Series&rft.au=Andreev,%20Alexander%20E.&rft.date=1994-02-03&rft.volume=1&rft.issue=2&rft.issn=0909-0878&rft.eissn=1601-5355&rft_id=info:doi/10.7146/brics.v1i2.21668&rft_dat=%3Cstatsbiblioteket_cross%3E21668%3C/statsbiblioteket_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true