On the Equivalence between Small-Step and Big-Step Abstract Machines: A Simple Application of Lightweight Fusion
We show how Ohori and Sasano's recent lightweight fusion by fixed-point promotion provides a simple way to prove the equivalence of the two standard styles of specification of abstract machines: (1) in small-step form, as a state-transition function together with a `driver loop,' i.e., a f...
Gespeichert in:
Veröffentlicht in: | BRICS Report Series 2007-11, Vol.14 (16) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show how Ohori and Sasano's recent lightweight fusion by fixed-point promotion provides a simple way to prove the equivalence of the two standard styles of specification of abstract machines: (1) in small-step form, as a state-transition function together with a `driver loop,' i.e., a function implementing the iteration of this transition function; and (2) in big-step form, as a tail-recursive function that directly maps a given configuration to a final state, if any. The equivalence hinges on our observation that for abstract machines, fusing a small-step specification yields a big-step specification. We illustrate this observation here with a recognizer for Dyck words, the CEK machine, and Krivine's machine with call/cc.
The need for such a simple proof is motivated by our current work on small-step abstract machines as obtained by refocusing a function implementing a reduction semantics (a syntactic correspondence), and big-step abstract machines as obtained by CPS-transforming and then defunctionalizing a function implementing a big-step semantics (a functional correspondence). |
---|---|
ISSN: | 0909-0878 1601-5355 |
DOI: | 10.7146/brics.v14i16.21935 |