A Concrete Framework for Environment Machines

We materialize the common belief that calculi with explicit substitutions provide an intermediate step between an abstract specification of substitution in the lambda-calculus and its concrete implementations. To this end, we go back to Curien's original calculus of closures (an early calculus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BRICS Report Series 2005-05, Vol.12 (15)
Hauptverfasser: Biernacka, Malgorzata, Danvy, Olivier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title BRICS Report Series
container_volume 12
creator Biernacka, Malgorzata
Danvy, Olivier
description We materialize the common belief that calculi with explicit substitutions provide an intermediate step between an abstract specification of substitution in the lambda-calculus and its concrete implementations. To this end, we go back to Curien's original calculus of closures (an early calculus with explicit substitutions), we extend it minimally so that it can express one-step reduction strategies, and we methodically derive a series of environment machines from the specification of two one-step reduction strategies for the lambda-calculus: normal order and applicative order. The derivation extends Danvy and Nielsen's refocusing-based construction of abstract machines with two new steps: one for coalescing two successive transitions into one, and one for unfolding a closure into a term and an environment in the resulting abstract machine. The resulting environment machines include both the idealized and the original versions of Krivine's machine, Felleisen et al.'s CEK machine, and Leroy's Zinc abstract machine.
doi_str_mv 10.7146/brics.v12i15.21881
format Article
fullrecord <record><control><sourceid>statsbiblioteket_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7146_brics_v12i15_21881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1921-ebd40d022cdfbb296f604eb5190f458eef6f15abe6517571be727c3caa7bb0ed3</originalsourceid><addsrcrecordid>eNotj9FKwzAYRoMoOOZewKu-QGf-tGnSKxljU2HijV6HJP2DsV0jSZj49s52V-fqfB-HkHugawF182Cit2l9AuaBrxlICVdkAQ2FklecX5MFbWlbUinkLVml5A1lrJZStNWClJtiG0YbMWOxj_qIPyH2hQux2I0nH8N4xDEXr9p--hHTHblxeki4unBJPva79-1zeXh7etluDqWFlkGJpqtpd36xnTOGtY1raI2GQ0tdzSWiaxxwbbDhILgAg4IJW1mthTEUu2pJ2LxrY0gpolPf0R91_FVA1X-zmprV3Kym5rP0OEsp65yMN4MPGXvMKnwlFbSfmH2XUh-9y6rrlY7Z2wEvC38-82Rt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Concrete Framework for Environment Machines</title><source>tidsskrift.dk</source><creator>Biernacka, Malgorzata ; Danvy, Olivier</creator><creatorcontrib>Biernacka, Malgorzata ; Danvy, Olivier</creatorcontrib><description>We materialize the common belief that calculi with explicit substitutions provide an intermediate step between an abstract specification of substitution in the lambda-calculus and its concrete implementations. To this end, we go back to Curien's original calculus of closures (an early calculus with explicit substitutions), we extend it minimally so that it can express one-step reduction strategies, and we methodically derive a series of environment machines from the specification of two one-step reduction strategies for the lambda-calculus: normal order and applicative order. The derivation extends Danvy and Nielsen's refocusing-based construction of abstract machines with two new steps: one for coalescing two successive transitions into one, and one for unfolding a closure into a term and an environment in the resulting abstract machine. The resulting environment machines include both the idealized and the original versions of Krivine's machine, Felleisen et al.'s CEK machine, and Leroy's Zinc abstract machine.</description><identifier>ISSN: 0909-0878</identifier><identifier>EISSN: 1601-5355</identifier><identifier>DOI: 10.7146/brics.v12i15.21881</identifier><language>eng</language><publisher>Aarhus University</publisher><ispartof>BRICS Report Series, 2005-05, Vol.12 (15)</ispartof><rights>Copyright (c) 2015 BRICS Report Series</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1921-ebd40d022cdfbb296f604eb5190f458eef6f15abe6517571be727c3caa7bb0ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Biernacka, Malgorzata</creatorcontrib><creatorcontrib>Danvy, Olivier</creatorcontrib><title>A Concrete Framework for Environment Machines</title><title>BRICS Report Series</title><addtitle>BRICS</addtitle><description>We materialize the common belief that calculi with explicit substitutions provide an intermediate step between an abstract specification of substitution in the lambda-calculus and its concrete implementations. To this end, we go back to Curien's original calculus of closures (an early calculus with explicit substitutions), we extend it minimally so that it can express one-step reduction strategies, and we methodically derive a series of environment machines from the specification of two one-step reduction strategies for the lambda-calculus: normal order and applicative order. The derivation extends Danvy and Nielsen's refocusing-based construction of abstract machines with two new steps: one for coalescing two successive transitions into one, and one for unfolding a closure into a term and an environment in the resulting abstract machine. The resulting environment machines include both the idealized and the original versions of Krivine's machine, Felleisen et al.'s CEK machine, and Leroy's Zinc abstract machine.</description><issn>0909-0878</issn><issn>1601-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>5R1</sourceid><recordid>eNotj9FKwzAYRoMoOOZewKu-QGf-tGnSKxljU2HijV6HJP2DsV0jSZj49s52V-fqfB-HkHugawF182Cit2l9AuaBrxlICVdkAQ2FklecX5MFbWlbUinkLVml5A1lrJZStNWClJtiG0YbMWOxj_qIPyH2hQux2I0nH8N4xDEXr9p--hHTHblxeki4unBJPva79-1zeXh7etluDqWFlkGJpqtpd36xnTOGtY1raI2GQ0tdzSWiaxxwbbDhILgAg4IJW1mthTEUu2pJ2LxrY0gpolPf0R91_FVA1X-zmprV3Kym5rP0OEsp65yMN4MPGXvMKnwlFbSfmH2XUh-9y6rrlY7Z2wEvC38-82Rt</recordid><startdate>20050511</startdate><enddate>20050511</enddate><creator>Biernacka, Malgorzata</creator><creator>Danvy, Olivier</creator><general>Aarhus University</general><scope>5R1</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050511</creationdate><title>A Concrete Framework for Environment Machines</title><author>Biernacka, Malgorzata ; Danvy, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1921-ebd40d022cdfbb296f604eb5190f458eef6f15abe6517571be727c3caa7bb0ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Biernacka, Malgorzata</creatorcontrib><creatorcontrib>Danvy, Olivier</creatorcontrib><collection>tidsskrift.dk</collection><collection>CrossRef</collection><jtitle>BRICS Report Series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biernacka, Malgorzata</au><au>Danvy, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Concrete Framework for Environment Machines</atitle><jtitle>BRICS Report Series</jtitle><stitle>BRICS</stitle><date>2005-05-11</date><risdate>2005</risdate><volume>12</volume><issue>15</issue><issn>0909-0878</issn><eissn>1601-5355</eissn><abstract>We materialize the common belief that calculi with explicit substitutions provide an intermediate step between an abstract specification of substitution in the lambda-calculus and its concrete implementations. To this end, we go back to Curien's original calculus of closures (an early calculus with explicit substitutions), we extend it minimally so that it can express one-step reduction strategies, and we methodically derive a series of environment machines from the specification of two one-step reduction strategies for the lambda-calculus: normal order and applicative order. The derivation extends Danvy and Nielsen's refocusing-based construction of abstract machines with two new steps: one for coalescing two successive transitions into one, and one for unfolding a closure into a term and an environment in the resulting abstract machine. The resulting environment machines include both the idealized and the original versions of Krivine's machine, Felleisen et al.'s CEK machine, and Leroy's Zinc abstract machine.</abstract><pub>Aarhus University</pub><doi>10.7146/brics.v12i15.21881</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0909-0878
ispartof BRICS Report Series, 2005-05, Vol.12 (15)
issn 0909-0878
1601-5355
language eng
recordid cdi_crossref_primary_10_7146_brics_v12i15_21881
source tidsskrift.dk
title A Concrete Framework for Environment Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-statsbiblioteket_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Concrete%20Framework%20for%20Environment%20Machines&rft.jtitle=BRICS%20Report%20Series&rft.au=Biernacka,%20Malgorzata&rft.date=2005-05-11&rft.volume=12&rft.issue=15&rft.issn=0909-0878&rft.eissn=1601-5355&rft_id=info:doi/10.7146/brics.v12i15.21881&rft_dat=%3Cstatsbiblioteket_cross%3E21881%3C/statsbiblioteket_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true