Spline Pattern-Mixture Models for Missing Data

We consider a continuous outcome subject to nonresponse and a fully observed covariate. We propose a spline proxy pattern-mixture model (S-PPMA), an extension of the proxy pattern-mixture model (PPMA) (Andridge and Little, 2011), to estimate the mean of the outcome under varying assumptions about no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Data Science 2021-01, Vol.19 (1), p.75-95
Hauptverfasser: Yang, Ye, Little, Roderick J.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 75
container_title Journal of Data Science
container_volume 19
creator Yang, Ye
Little, Roderick J.A.
description We consider a continuous outcome subject to nonresponse and a fully observed covariate. We propose a spline proxy pattern-mixture model (S-PPMA), an extension of the proxy pattern-mixture model (PPMA) (Andridge and Little, 2011), to estimate the mean of the outcome under varying assumptions about nonresponse. S-PPMA improves the robustness of PPMA, which assumes bivariate normality between the outcome and the covariate, by modeling the relationship via a spline. Simulations indicate that S-PPMA outperforms PPMA when the data deviate from normality and are missing not at random, with minor losses of efficiency when the data are normal.
doi_str_mv 10.6339/21-JDS1008
format Article
fullrecord <record><control><sourceid>airiti_cross</sourceid><recordid>TN_cdi_crossref_primary_10_6339_21_JDS1008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>16838602_202101_202103090003_202103090003_75_95</airiti_id><sourcerecordid>16838602_202101_202103090003_202103090003_75_95</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2048-b9d4e29fa33af99e9f65b1bde0b3f3152738c85ec0ae1f505998f537b5ff04893</originalsourceid><addsrcrecordid>eNpVj1FLwzAUhYMoOKcv_oI-C503uUub-yibm8qKwvQ5pG0iGbUdSQf67-3oHvTpnAvnHO7H2C2HWYZI94KnL8stB1BnbMIzhanKQJz_8ZfsKsYdgCBQMGGz7b7xrU3eTN_b0KaF_-4PwSZFV9smJq4LSeFj9O1nsjS9uWYXzjTR3px0yj5Wj--Lp3Tzun5ePGxSI2Cu0pLquRXkDKJxRJZcJkte1hZKdMilyFFVStoKjOVOgiRSTmJeSueGPuGU3Y27VehiDNbpffBfJvxoDvpIqgXXJ9IhvBrDxgffe73rDqEdvtNH6COzFiA48FEQCADw_5FLTRJ_AR1rV8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spline Pattern-Mixture Models for Missing Data</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Ye ; Little, Roderick J.A.</creator><creatorcontrib>Yang, Ye ; Little, Roderick J.A.</creatorcontrib><description>We consider a continuous outcome subject to nonresponse and a fully observed covariate. We propose a spline proxy pattern-mixture model (S-PPMA), an extension of the proxy pattern-mixture model (PPMA) (Andridge and Little, 2011), to estimate the mean of the outcome under varying assumptions about nonresponse. S-PPMA improves the robustness of PPMA, which assumes bivariate normality between the outcome and the covariate, by modeling the relationship via a spline. Simulations indicate that S-PPMA outperforms PPMA when the data deviate from normality and are missing not at random, with minor losses of efficiency when the data are normal.</description><identifier>ISSN: 1683-8602</identifier><identifier>ISSN: 1680-743X</identifier><identifier>EISSN: 1683-8602</identifier><identifier>DOI: 10.6339/21-JDS1008</identifier><language>eng</language><publisher>中華資料採礦協會</publisher><ispartof>Journal of Data Science, 2021-01, Vol.19 (1), p.75-95</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2048-b9d4e29fa33af99e9f65b1bde0b3f3152738c85ec0ae1f505998f537b5ff04893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Little, Roderick J.A.</creatorcontrib><title>Spline Pattern-Mixture Models for Missing Data</title><title>Journal of Data Science</title><description>We consider a continuous outcome subject to nonresponse and a fully observed covariate. We propose a spline proxy pattern-mixture model (S-PPMA), an extension of the proxy pattern-mixture model (PPMA) (Andridge and Little, 2011), to estimate the mean of the outcome under varying assumptions about nonresponse. S-PPMA improves the robustness of PPMA, which assumes bivariate normality between the outcome and the covariate, by modeling the relationship via a spline. Simulations indicate that S-PPMA outperforms PPMA when the data deviate from normality and are missing not at random, with minor losses of efficiency when the data are normal.</description><issn>1683-8602</issn><issn>1680-743X</issn><issn>1683-8602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVj1FLwzAUhYMoOKcv_oI-C503uUub-yibm8qKwvQ5pG0iGbUdSQf67-3oHvTpnAvnHO7H2C2HWYZI94KnL8stB1BnbMIzhanKQJz_8ZfsKsYdgCBQMGGz7b7xrU3eTN_b0KaF_-4PwSZFV9smJq4LSeFj9O1nsjS9uWYXzjTR3px0yj5Wj--Lp3Tzun5ePGxSI2Cu0pLquRXkDKJxRJZcJkte1hZKdMilyFFVStoKjOVOgiRSTmJeSueGPuGU3Y27VehiDNbpffBfJvxoDvpIqgXXJ9IhvBrDxgffe73rDqEdvtNH6COzFiA48FEQCADw_5FLTRJ_AR1rV8Y</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Yang, Ye</creator><creator>Little, Roderick J.A.</creator><general>中華資料採礦協會</general><scope>188</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Spline Pattern-Mixture Models for Missing Data</title><author>Yang, Ye ; Little, Roderick J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2048-b9d4e29fa33af99e9f65b1bde0b3f3152738c85ec0ae1f505998f537b5ff04893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Little, Roderick J.A.</creatorcontrib><collection>Airiti Library</collection><collection>CrossRef</collection><jtitle>Journal of Data Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ye</au><au>Little, Roderick J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spline Pattern-Mixture Models for Missing Data</atitle><jtitle>Journal of Data Science</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>75</spage><epage>95</epage><pages>75-95</pages><issn>1683-8602</issn><issn>1680-743X</issn><eissn>1683-8602</eissn><abstract>We consider a continuous outcome subject to nonresponse and a fully observed covariate. We propose a spline proxy pattern-mixture model (S-PPMA), an extension of the proxy pattern-mixture model (PPMA) (Andridge and Little, 2011), to estimate the mean of the outcome under varying assumptions about nonresponse. S-PPMA improves the robustness of PPMA, which assumes bivariate normality between the outcome and the covariate, by modeling the relationship via a spline. Simulations indicate that S-PPMA outperforms PPMA when the data deviate from normality and are missing not at random, with minor losses of efficiency when the data are normal.</abstract><pub>中華資料採礦協會</pub><doi>10.6339/21-JDS1008</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1683-8602
ispartof Journal of Data Science, 2021-01, Vol.19 (1), p.75-95
issn 1683-8602
1680-743X
1683-8602
language eng
recordid cdi_crossref_primary_10_6339_21_JDS1008
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Spline Pattern-Mixture Models for Missing Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spline%20Pattern-Mixture%20Models%20for%20Missing%20Data&rft.jtitle=Journal%20of%20Data%20Science&rft.au=Yang,%20Ye&rft.date=2021-01-01&rft.volume=19&rft.issue=1&rft.spage=75&rft.epage=95&rft.pages=75-95&rft.issn=1683-8602&rft.eissn=1683-8602&rft_id=info:doi/10.6339/21-JDS1008&rft_dat=%3Cairiti_cross%3E16838602_202101_202103090003_202103090003_75_95%3C/airiti_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=16838602_202101_202103090003_202103090003_75_95&rfr_iscdi=true