Vocational Education Skill Assessment and Intelligent Assistance: A Study on the Application of Machine Learning Algorithms in the Assessment of Vocational Information Literacy Teaching Ability

Investigating vocational educators' knowledge-based teaching skills across China's Vocational Education (VE) institutions, this research focuses on the practical use of Machine Learning (ML) algorithms. Instructors' efficacy must be evaluated, and this work addresses the gap. VE perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Religion 2024-06, Vol.5 (11), p.1662-1671
Hauptverfasser: Dai, Jiali, Jambari, Hanifah
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1671
container_issue 11
container_start_page 1662
container_title International Journal of Religion
container_volume 5
creator Dai, Jiali
Jambari, Hanifah
description Investigating vocational educators' knowledge-based teaching skills across China's Vocational Education (VE) institutions, this research focuses on the practical use of Machine Learning (ML) algorithms. Instructors' efficacy must be evaluated, and this work addresses the gap. VE performs an essential role in connecting learning abilities with the demands of industry. The investigation plans on developing an adaptable, subjective assessment technique that extends within the boundaries of conventional subjective evaluation methods using modern ML techniques such as Support Vector Machines (SVM), Decision Trees (DT), and Neural Networks (NN). Each ML model's accuracy, reliability, and feasibility have been determined using data collected from 120 vocational educators encompassing various fields and regions. Researchers predict that our findings will provide perspective on how to improve vocational education settings' teaching methods and governance. 
doi_str_mv 10.61707/3z77ka52
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_61707_3z77ka52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_61707_3z77ka52</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_61707_3z77ka523</originalsourceid><addsrcrecordid>eNqVkM9OwzAMxiMEEhPswBv4ymGQNtpauFVoiEnjtAlxq0LrtmZpMsXZobwdb0a3lT9XTv4s-_vZ-oS4iuTNLEpkcqs-kmSjp_GJGMUzpSZqqtLTHx2_nosx87uUUkVpkqq7kfh8cYUO5Kw2MC93Rw2rDRkDGTMyt2gDaFvCwgY0hup934-Ig7YF3kMGq7ArO-h9oUHItltDA8dV8KyLhizCErW3ZGvITO08haZloMHxe6c3_HloYSvn2yNqSQG9LjpY44HYg97IUOguxVmlDeN4qBfi-nG-fniaFN4xe6zyradW-y6PZH6IKf-OSf1n9wvbRHL5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vocational Education Skill Assessment and Intelligent Assistance: A Study on the Application of Machine Learning Algorithms in the Assessment of Vocational Information Literacy Teaching Ability</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Central and Eastern European Online Library</source><creator>Dai, Jiali ; Jambari, Hanifah</creator><creatorcontrib>Dai, Jiali ; Jambari, Hanifah</creatorcontrib><description>Investigating vocational educators' knowledge-based teaching skills across China's Vocational Education (VE) institutions, this research focuses on the practical use of Machine Learning (ML) algorithms. Instructors' efficacy must be evaluated, and this work addresses the gap. VE performs an essential role in connecting learning abilities with the demands of industry. The investigation plans on developing an adaptable, subjective assessment technique that extends within the boundaries of conventional subjective evaluation methods using modern ML techniques such as Support Vector Machines (SVM), Decision Trees (DT), and Neural Networks (NN). Each ML model's accuracy, reliability, and feasibility have been determined using data collected from 120 vocational educators encompassing various fields and regions. Researchers predict that our findings will provide perspective on how to improve vocational education settings' teaching methods and governance. </description><identifier>ISSN: 2633-352X</identifier><identifier>EISSN: 2633-3538</identifier><identifier>DOI: 10.61707/3z77ka52</identifier><language>eng</language><ispartof>International Journal of Religion, 2024-06, Vol.5 (11), p.1662-1671</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dai, Jiali</creatorcontrib><creatorcontrib>Jambari, Hanifah</creatorcontrib><title>Vocational Education Skill Assessment and Intelligent Assistance: A Study on the Application of Machine Learning Algorithms in the Assessment of Vocational Information Literacy Teaching Ability</title><title>International Journal of Religion</title><description>Investigating vocational educators' knowledge-based teaching skills across China's Vocational Education (VE) institutions, this research focuses on the practical use of Machine Learning (ML) algorithms. Instructors' efficacy must be evaluated, and this work addresses the gap. VE performs an essential role in connecting learning abilities with the demands of industry. The investigation plans on developing an adaptable, subjective assessment technique that extends within the boundaries of conventional subjective evaluation methods using modern ML techniques such as Support Vector Machines (SVM), Decision Trees (DT), and Neural Networks (NN). Each ML model's accuracy, reliability, and feasibility have been determined using data collected from 120 vocational educators encompassing various fields and regions. Researchers predict that our findings will provide perspective on how to improve vocational education settings' teaching methods and governance. </description><issn>2633-352X</issn><issn>2633-3538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVkM9OwzAMxiMEEhPswBv4ymGQNtpauFVoiEnjtAlxq0LrtmZpMsXZobwdb0a3lT9XTv4s-_vZ-oS4iuTNLEpkcqs-kmSjp_GJGMUzpSZqqtLTHx2_nosx87uUUkVpkqq7kfh8cYUO5Kw2MC93Rw2rDRkDGTMyt2gDaFvCwgY0hup934-Ig7YF3kMGq7ArO-h9oUHItltDA8dV8KyLhizCErW3ZGvITO08haZloMHxe6c3_HloYSvn2yNqSQG9LjpY44HYg97IUOguxVmlDeN4qBfi-nG-fniaFN4xe6zyradW-y6PZH6IKf-OSf1n9wvbRHL5</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Dai, Jiali</creator><creator>Jambari, Hanifah</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240625</creationdate><title>Vocational Education Skill Assessment and Intelligent Assistance: A Study on the Application of Machine Learning Algorithms in the Assessment of Vocational Information Literacy Teaching Ability</title><author>Dai, Jiali ; Jambari, Hanifah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_61707_3z77ka523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Dai, Jiali</creatorcontrib><creatorcontrib>Jambari, Hanifah</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Religion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Jiali</au><au>Jambari, Hanifah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vocational Education Skill Assessment and Intelligent Assistance: A Study on the Application of Machine Learning Algorithms in the Assessment of Vocational Information Literacy Teaching Ability</atitle><jtitle>International Journal of Religion</jtitle><date>2024-06-25</date><risdate>2024</risdate><volume>5</volume><issue>11</issue><spage>1662</spage><epage>1671</epage><pages>1662-1671</pages><issn>2633-352X</issn><eissn>2633-3538</eissn><abstract>Investigating vocational educators' knowledge-based teaching skills across China's Vocational Education (VE) institutions, this research focuses on the practical use of Machine Learning (ML) algorithms. Instructors' efficacy must be evaluated, and this work addresses the gap. VE performs an essential role in connecting learning abilities with the demands of industry. The investigation plans on developing an adaptable, subjective assessment technique that extends within the boundaries of conventional subjective evaluation methods using modern ML techniques such as Support Vector Machines (SVM), Decision Trees (DT), and Neural Networks (NN). Each ML model's accuracy, reliability, and feasibility have been determined using data collected from 120 vocational educators encompassing various fields and regions. Researchers predict that our findings will provide perspective on how to improve vocational education settings' teaching methods and governance. </abstract><doi>10.61707/3z77ka52</doi></addata></record>
fulltext fulltext
identifier ISSN: 2633-352X
ispartof International Journal of Religion, 2024-06, Vol.5 (11), p.1662-1671
issn 2633-352X
2633-3538
language eng
recordid cdi_crossref_primary_10_61707_3z77ka52
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Central and Eastern European Online Library
title Vocational Education Skill Assessment and Intelligent Assistance: A Study on the Application of Machine Learning Algorithms in the Assessment of Vocational Information Literacy Teaching Ability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vocational%20Education%20Skill%20Assessment%20and%20Intelligent%20Assistance:%20A%20Study%20on%20the%20Application%20of%20Machine%20Learning%20Algorithms%20in%20the%20Assessment%20of%20Vocational%20Information%20Literacy%20Teaching%20Ability&rft.jtitle=International%20Journal%20of%20Religion&rft.au=Dai,%20Jiali&rft.date=2024-06-25&rft.volume=5&rft.issue=11&rft.spage=1662&rft.epage=1671&rft.pages=1662-1671&rft.issn=2633-352X&rft.eissn=2633-3538&rft_id=info:doi/10.61707/3z77ka52&rft_dat=%3Ccrossref%3E10_61707_3z77ka52%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true