Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment

This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Namibian studies 2023-05, Vol.33
Hauptverfasser: López González Wilmer Orlando, Gregory Guillermo Cuesta Andrade, Adriana Monserrath Monge Moreno, Byron Stalin Rojas Oviedo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of Namibian studies
container_volume 33
creator López González Wilmer Orlando
Gregory Guillermo Cuesta Andrade
Adriana Monserrath Monge Moreno
Byron Stalin Rojas Oviedo
description This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed.
doi_str_mv 10.59670/jns.v33i.953
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_59670_jns_v33i_953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_59670_jns_v33i_953</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_59670_jns_v33i_9533</originalsourceid><addsrcrecordid>eNqVj8FKxDAURYMoWHSW7vMBtiYTM7XLUUacxey6DyEm7RvSl5rEwvy9qfgDwoULl3MXh5AHzhrZ7Vr2dMbULEJA00lxRaot79payq24JhV_2YladvL5lmxSOjPGeCvWVGTZz7MHozMETDQ4uo8ZHBjQnh4xW-9hsGgsBaR5tLS32oyAw4qedFmmcjUF7q0ZEb6-baIuRPoKwYfh8khPgCuu8ZMecIEYcLKY78mN0z7ZzV_fkfr90L991CaGlKJ1ao4w6XhRnKlfP1X81Oqnip_4L_8DKM1bcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>López González Wilmer Orlando ; Gregory Guillermo Cuesta Andrade ; Adriana Monserrath Monge Moreno ; Byron Stalin Rojas Oviedo</creator><creatorcontrib>López González Wilmer Orlando ; Gregory Guillermo Cuesta Andrade ; Adriana Monserrath Monge Moreno ; Byron Stalin Rojas Oviedo</creatorcontrib><description>This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed.</description><identifier>ISSN: 1863-5954</identifier><identifier>EISSN: 2197-5523</identifier><identifier>DOI: 10.59670/jns.v33i.953</identifier><language>eng</language><ispartof>Journal of Namibian studies, 2023-05, Vol.33</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>López González Wilmer Orlando</creatorcontrib><creatorcontrib>Gregory Guillermo Cuesta Andrade</creatorcontrib><creatorcontrib>Adriana Monserrath Monge Moreno</creatorcontrib><creatorcontrib>Byron Stalin Rojas Oviedo</creatorcontrib><title>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</title><title>Journal of Namibian studies</title><description>This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed.</description><issn>1863-5954</issn><issn>2197-5523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVj8FKxDAURYMoWHSW7vMBtiYTM7XLUUacxey6DyEm7RvSl5rEwvy9qfgDwoULl3MXh5AHzhrZ7Vr2dMbULEJA00lxRaot79payq24JhV_2YladvL5lmxSOjPGeCvWVGTZz7MHozMETDQ4uo8ZHBjQnh4xW-9hsGgsBaR5tLS32oyAw4qedFmmcjUF7q0ZEb6-baIuRPoKwYfh8khPgCuu8ZMecIEYcLKY78mN0z7ZzV_fkfr90L991CaGlKJ1ao4w6XhRnKlfP1X81Oqnip_4L_8DKM1bcQ</recordid><startdate>20230521</startdate><enddate>20230521</enddate><creator>López González Wilmer Orlando</creator><creator>Gregory Guillermo Cuesta Andrade</creator><creator>Adriana Monserrath Monge Moreno</creator><creator>Byron Stalin Rojas Oviedo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230521</creationdate><title>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</title><author>López González Wilmer Orlando ; Gregory Guillermo Cuesta Andrade ; Adriana Monserrath Monge Moreno ; Byron Stalin Rojas Oviedo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_59670_jns_v33i_9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López González Wilmer Orlando</creatorcontrib><creatorcontrib>Gregory Guillermo Cuesta Andrade</creatorcontrib><creatorcontrib>Adriana Monserrath Monge Moreno</creatorcontrib><creatorcontrib>Byron Stalin Rojas Oviedo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Namibian studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López González Wilmer Orlando</au><au>Gregory Guillermo Cuesta Andrade</au><au>Adriana Monserrath Monge Moreno</au><au>Byron Stalin Rojas Oviedo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</atitle><jtitle>Journal of Namibian studies</jtitle><date>2023-05-21</date><risdate>2023</risdate><volume>33</volume><issn>1863-5954</issn><eissn>2197-5523</eissn><abstract>This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed.</abstract><doi>10.59670/jns.v33i.953</doi></addata></record>
fulltext fulltext
identifier ISSN: 1863-5954
ispartof Journal of Namibian studies, 2023-05, Vol.33
issn 1863-5954
2197-5523
language eng
recordid cdi_crossref_primary_10_59670_jns_v33i_953
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Artificial%20Intelligence%20in%20the%20Teaching%20of%20Mathematical%20Techniques%20for%20Biology,%20Mining%20and%20Environment&rft.jtitle=Journal%20of%20Namibian%20studies&rft.au=Lo%CC%81pez%20Gonza%CC%81lez%20Wilmer%20Orlando&rft.date=2023-05-21&rft.volume=33&rft.issn=1863-5954&rft.eissn=2197-5523&rft_id=info:doi/10.59670/jns.v33i.953&rft_dat=%3Ccrossref%3E10_59670_jns_v33i_953%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true