Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment
This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application i...
Gespeichert in:
Veröffentlicht in: | Journal of Namibian studies 2023-05, Vol.33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of Namibian studies |
container_volume | 33 |
creator | López González Wilmer Orlando Gregory Guillermo Cuesta Andrade Adriana Monserrath Monge Moreno Byron Stalin Rojas Oviedo |
description | This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed. |
doi_str_mv | 10.59670/jns.v33i.953 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_59670_jns_v33i_953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_59670_jns_v33i_953</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_59670_jns_v33i_9533</originalsourceid><addsrcrecordid>eNqVj8FKxDAURYMoWHSW7vMBtiYTM7XLUUacxey6DyEm7RvSl5rEwvy9qfgDwoULl3MXh5AHzhrZ7Vr2dMbULEJA00lxRaot79payq24JhV_2YladvL5lmxSOjPGeCvWVGTZz7MHozMETDQ4uo8ZHBjQnh4xW-9hsGgsBaR5tLS32oyAw4qedFmmcjUF7q0ZEb6-baIuRPoKwYfh8khPgCuu8ZMecIEYcLKY78mN0z7ZzV_fkfr90L991CaGlKJ1ao4w6XhRnKlfP1X81Oqnip_4L_8DKM1bcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>López González Wilmer Orlando ; Gregory Guillermo Cuesta Andrade ; Adriana Monserrath Monge Moreno ; Byron Stalin Rojas Oviedo</creator><creatorcontrib>López González Wilmer Orlando ; Gregory Guillermo Cuesta Andrade ; Adriana Monserrath Monge Moreno ; Byron Stalin Rojas Oviedo</creatorcontrib><description>This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed.</description><identifier>ISSN: 1863-5954</identifier><identifier>EISSN: 2197-5523</identifier><identifier>DOI: 10.59670/jns.v33i.953</identifier><language>eng</language><ispartof>Journal of Namibian studies, 2023-05, Vol.33</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>López González Wilmer Orlando</creatorcontrib><creatorcontrib>Gregory Guillermo Cuesta Andrade</creatorcontrib><creatorcontrib>Adriana Monserrath Monge Moreno</creatorcontrib><creatorcontrib>Byron Stalin Rojas Oviedo</creatorcontrib><title>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</title><title>Journal of Namibian studies</title><description>This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed.</description><issn>1863-5954</issn><issn>2197-5523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVj8FKxDAURYMoWHSW7vMBtiYTM7XLUUacxey6DyEm7RvSl5rEwvy9qfgDwoULl3MXh5AHzhrZ7Vr2dMbULEJA00lxRaot79payq24JhV_2YladvL5lmxSOjPGeCvWVGTZz7MHozMETDQ4uo8ZHBjQnh4xW-9hsGgsBaR5tLS32oyAw4qedFmmcjUF7q0ZEb6-baIuRPoKwYfh8khPgCuu8ZMecIEYcLKY78mN0z7ZzV_fkfr90L991CaGlKJ1ao4w6XhRnKlfP1X81Oqnip_4L_8DKM1bcQ</recordid><startdate>20230521</startdate><enddate>20230521</enddate><creator>López González Wilmer Orlando</creator><creator>Gregory Guillermo Cuesta Andrade</creator><creator>Adriana Monserrath Monge Moreno</creator><creator>Byron Stalin Rojas Oviedo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230521</creationdate><title>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</title><author>López González Wilmer Orlando ; Gregory Guillermo Cuesta Andrade ; Adriana Monserrath Monge Moreno ; Byron Stalin Rojas Oviedo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_59670_jns_v33i_9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López González Wilmer Orlando</creatorcontrib><creatorcontrib>Gregory Guillermo Cuesta Andrade</creatorcontrib><creatorcontrib>Adriana Monserrath Monge Moreno</creatorcontrib><creatorcontrib>Byron Stalin Rojas Oviedo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Namibian studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López González Wilmer Orlando</au><au>Gregory Guillermo Cuesta Andrade</au><au>Adriana Monserrath Monge Moreno</au><au>Byron Stalin Rojas Oviedo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment</atitle><jtitle>Journal of Namibian studies</jtitle><date>2023-05-21</date><risdate>2023</risdate><volume>33</volume><issn>1863-5954</issn><eissn>2197-5523</eissn><abstract>This scientific article explores the use of artificial intelligence (AI) as an effective tool in teaching mathematical techniques applied to the fields of biology, mining and environment. It examines the potential of AI to improve the learning of complex mathematical concepts and their application in real-world scenarios. Various AI approaches, such as machine learning and neural networks, which have shown promise in optimizing and automating mathematical tasks, are discussed. Concrete examples of AI applications in solving mathematical problems related to biology, mining and the environment are presented. Finally, the advantages and limitations of these techniques are highlighted and the future perspectives of the integration of AI in the teaching of mathematical techniques in these fields are discussed.</abstract><doi>10.59670/jns.v33i.953</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-5954 |
ispartof | Journal of Namibian studies, 2023-05, Vol.33 |
issn | 1863-5954 2197-5523 |
language | eng |
recordid | cdi_crossref_primary_10_59670_jns_v33i_953 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Applications of Artificial Intelligence in the Teaching of Mathematical Techniques for Biology, Mining and Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Artificial%20Intelligence%20in%20the%20Teaching%20of%20Mathematical%20Techniques%20for%20Biology,%20Mining%20and%20Environment&rft.jtitle=Journal%20of%20Namibian%20studies&rft.au=Lo%CC%81pez%20Gonza%CC%81lez%20Wilmer%20Orlando&rft.date=2023-05-21&rft.volume=33&rft.issn=1863-5954&rft.eissn=2197-5523&rft_id=info:doi/10.59670/jns.v33i.953&rft_dat=%3Ccrossref%3E10_59670_jns_v33i_953%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |