Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs
Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of t...
Gespeichert in:
Veröffentlicht in: | Balkan Journal of Dental Medicine 2024, Vol.28 (2), p.99-116 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | 2 |
container_start_page | 99 |
container_title | Balkan Journal of Dental Medicine |
container_volume | 28 |
creator | Tassoker, Melek Hakli, Huseyin Yaman, Metin Ekmekcı, Sema Incekara, Senanur Kamaci, Serhat Ozturk, Busra |
description | Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7. |
doi_str_mv | 10.5937/bjdm2402099T |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5937_bjdm2402099T</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d</doaj_id><sourcerecordid>oai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-46cb36fca2e1885986990685d5597922fc378cf35b766eb2bb1324e0399a745e3</originalsourceid><addsrcrecordid>eNpNkc1q3DAUhU1ooWGaXR9ADxC3-rWk5TC0SWCgm3RtruRrj4axZGRNS3d59GiSELK6f5zvwjlN843R78oK_cMdh5lLyqm1j1fNNdfCtNRQ_an2QqiWcqm-NDfrGhyVUgvGqLxunrbnkmYowZMBC_oSUiRprMOEEXM9_EXiDxAnXEmIpByQFJyXlKsqDsGdT5DJMYVYSMbpoj6vIU4VgAs5IeR4mf6FciALxJRhrq8yDCFNGZbD-rX5PMJpxZu3umn-_Pr5uLtv97_vHnbbfeuZZKWVnXeiGz1wZMYoazpraWfUoJTVlvPRC238KJTTXYeOO8cEl0iFtaClQrFpHl65Q4Jjv-QwQ_7fJwj9yyLlqYdcbThh76W0XrBqJEjpwFiNjInBGm_oiGyorNtXls9pXTOO7zxG-0sY_ccwxDMsFX-r</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tassoker, Melek ; Hakli, Huseyin ; Yaman, Metin ; Ekmekcı, Sema ; Incekara, Senanur ; Kamaci, Serhat ; Ozturk, Busra</creator><creatorcontrib>Tassoker, Melek ; Hakli, Huseyin ; Yaman, Metin ; Ekmekcı, Sema ; Incekara, Senanur ; Kamaci, Serhat ; Ozturk, Busra</creatorcontrib><description>Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7.</description><identifier>ISSN: 2335-0245</identifier><identifier>EISSN: 2738-0807</identifier><identifier>EISSN: 2335-0245</identifier><identifier>DOI: 10.5937/bjdm2402099T</identifier><language>eng</language><publisher>Balkan Stomatological Society</publisher><subject>deep learning ; degeneration ; panoramic radiography ; temporomandibular joint</subject><ispartof>Balkan Journal of Dental Medicine, 2024, Vol.28 (2), p.99-116</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c141t-46cb36fca2e1885986990685d5597922fc378cf35b766eb2bb1324e0399a745e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Tassoker, Melek</creatorcontrib><creatorcontrib>Hakli, Huseyin</creatorcontrib><creatorcontrib>Yaman, Metin</creatorcontrib><creatorcontrib>Ekmekcı, Sema</creatorcontrib><creatorcontrib>Incekara, Senanur</creatorcontrib><creatorcontrib>Kamaci, Serhat</creatorcontrib><creatorcontrib>Ozturk, Busra</creatorcontrib><title>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</title><title>Balkan Journal of Dental Medicine</title><description>Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7.</description><subject>deep learning</subject><subject>degeneration</subject><subject>panoramic radiography</subject><subject>temporomandibular joint</subject><issn>2335-0245</issn><issn>2738-0807</issn><issn>2335-0245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc1q3DAUhU1ooWGaXR9ADxC3-rWk5TC0SWCgm3RtruRrj4axZGRNS3d59GiSELK6f5zvwjlN843R78oK_cMdh5lLyqm1j1fNNdfCtNRQ_an2QqiWcqm-NDfrGhyVUgvGqLxunrbnkmYowZMBC_oSUiRprMOEEXM9_EXiDxAnXEmIpByQFJyXlKsqDsGdT5DJMYVYSMbpoj6vIU4VgAs5IeR4mf6FciALxJRhrq8yDCFNGZbD-rX5PMJpxZu3umn-_Pr5uLtv97_vHnbbfeuZZKWVnXeiGz1wZMYoazpraWfUoJTVlvPRC238KJTTXYeOO8cEl0iFtaClQrFpHl65Q4Jjv-QwQ_7fJwj9yyLlqYdcbThh76W0XrBqJEjpwFiNjInBGm_oiGyorNtXls9pXTOO7zxG-0sY_ccwxDMsFX-r</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tassoker, Melek</creator><creator>Hakli, Huseyin</creator><creator>Yaman, Metin</creator><creator>Ekmekcı, Sema</creator><creator>Incekara, Senanur</creator><creator>Kamaci, Serhat</creator><creator>Ozturk, Busra</creator><general>Balkan Stomatological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</title><author>Tassoker, Melek ; Hakli, Huseyin ; Yaman, Metin ; Ekmekcı, Sema ; Incekara, Senanur ; Kamaci, Serhat ; Ozturk, Busra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-46cb36fca2e1885986990685d5597922fc378cf35b766eb2bb1324e0399a745e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep learning</topic><topic>degeneration</topic><topic>panoramic radiography</topic><topic>temporomandibular joint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tassoker, Melek</creatorcontrib><creatorcontrib>Hakli, Huseyin</creatorcontrib><creatorcontrib>Yaman, Metin</creatorcontrib><creatorcontrib>Ekmekcı, Sema</creatorcontrib><creatorcontrib>Incekara, Senanur</creatorcontrib><creatorcontrib>Kamaci, Serhat</creatorcontrib><creatorcontrib>Ozturk, Busra</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Balkan Journal of Dental Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tassoker, Melek</au><au>Hakli, Huseyin</au><au>Yaman, Metin</au><au>Ekmekcı, Sema</au><au>Incekara, Senanur</au><au>Kamaci, Serhat</au><au>Ozturk, Busra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</atitle><jtitle>Balkan Journal of Dental Medicine</jtitle><date>2024</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>99</spage><epage>116</epage><pages>99-116</pages><issn>2335-0245</issn><eissn>2738-0807</eissn><eissn>2335-0245</eissn><abstract>Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7.</abstract><pub>Balkan Stomatological Society</pub><doi>10.5937/bjdm2402099T</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2335-0245 |
ispartof | Balkan Journal of Dental Medicine, 2024, Vol.28 (2), p.99-116 |
issn | 2335-0245 2738-0807 2335-0245 |
language | eng |
recordid | cdi_crossref_primary_10_5937_bjdm2402099T |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | deep learning degeneration panoramic radiography temporomandibular joint |
title | Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20degenerative%20changes%20in%20the%20temporomandibular%20joint%20region%20using%20deep%20learning%20with%20panoramic%20radiographs&rft.jtitle=Balkan%20Journal%20of%20Dental%20Medicine&rft.au=Tassoker,%20Melek&rft.date=2024&rft.volume=28&rft.issue=2&rft.spage=99&rft.epage=116&rft.pages=99-116&rft.issn=2335-0245&rft.eissn=2738-0807&rft_id=info:doi/10.5937/bjdm2402099T&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d&rfr_iscdi=true |