Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs

Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Balkan Journal of Dental Medicine 2024, Vol.28 (2), p.99-116
Hauptverfasser: Tassoker, Melek, Hakli, Huseyin, Yaman, Metin, Ekmekcı, Sema, Incekara, Senanur, Kamaci, Serhat, Ozturk, Busra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 2
container_start_page 99
container_title Balkan Journal of Dental Medicine
container_volume 28
creator Tassoker, Melek
Hakli, Huseyin
Yaman, Metin
Ekmekcı, Sema
Incekara, Senanur
Kamaci, Serhat
Ozturk, Busra
description Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7.
doi_str_mv 10.5937/bjdm2402099T
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5937_bjdm2402099T</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d</doaj_id><sourcerecordid>oai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-46cb36fca2e1885986990685d5597922fc378cf35b766eb2bb1324e0399a745e3</originalsourceid><addsrcrecordid>eNpNkc1q3DAUhU1ooWGaXR9ADxC3-rWk5TC0SWCgm3RtruRrj4axZGRNS3d59GiSELK6f5zvwjlN843R78oK_cMdh5lLyqm1j1fNNdfCtNRQ_an2QqiWcqm-NDfrGhyVUgvGqLxunrbnkmYowZMBC_oSUiRprMOEEXM9_EXiDxAnXEmIpByQFJyXlKsqDsGdT5DJMYVYSMbpoj6vIU4VgAs5IeR4mf6FciALxJRhrq8yDCFNGZbD-rX5PMJpxZu3umn-_Pr5uLtv97_vHnbbfeuZZKWVnXeiGz1wZMYoazpraWfUoJTVlvPRC238KJTTXYeOO8cEl0iFtaClQrFpHl65Q4Jjv-QwQ_7fJwj9yyLlqYdcbThh76W0XrBqJEjpwFiNjInBGm_oiGyorNtXls9pXTOO7zxG-0sY_ccwxDMsFX-r</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tassoker, Melek ; Hakli, Huseyin ; Yaman, Metin ; Ekmekcı, Sema ; Incekara, Senanur ; Kamaci, Serhat ; Ozturk, Busra</creator><creatorcontrib>Tassoker, Melek ; Hakli, Huseyin ; Yaman, Metin ; Ekmekcı, Sema ; Incekara, Senanur ; Kamaci, Serhat ; Ozturk, Busra</creatorcontrib><description>Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7.</description><identifier>ISSN: 2335-0245</identifier><identifier>EISSN: 2738-0807</identifier><identifier>EISSN: 2335-0245</identifier><identifier>DOI: 10.5937/bjdm2402099T</identifier><language>eng</language><publisher>Balkan Stomatological Society</publisher><subject>deep learning ; degeneration ; panoramic radiography ; temporomandibular joint</subject><ispartof>Balkan Journal of Dental Medicine, 2024, Vol.28 (2), p.99-116</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c141t-46cb36fca2e1885986990685d5597922fc378cf35b766eb2bb1324e0399a745e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Tassoker, Melek</creatorcontrib><creatorcontrib>Hakli, Huseyin</creatorcontrib><creatorcontrib>Yaman, Metin</creatorcontrib><creatorcontrib>Ekmekcı, Sema</creatorcontrib><creatorcontrib>Incekara, Senanur</creatorcontrib><creatorcontrib>Kamaci, Serhat</creatorcontrib><creatorcontrib>Ozturk, Busra</creatorcontrib><title>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</title><title>Balkan Journal of Dental Medicine</title><description>Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7.</description><subject>deep learning</subject><subject>degeneration</subject><subject>panoramic radiography</subject><subject>temporomandibular joint</subject><issn>2335-0245</issn><issn>2738-0807</issn><issn>2335-0245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc1q3DAUhU1ooWGaXR9ADxC3-rWk5TC0SWCgm3RtruRrj4axZGRNS3d59GiSELK6f5zvwjlN843R78oK_cMdh5lLyqm1j1fNNdfCtNRQ_an2QqiWcqm-NDfrGhyVUgvGqLxunrbnkmYowZMBC_oSUiRprMOEEXM9_EXiDxAnXEmIpByQFJyXlKsqDsGdT5DJMYVYSMbpoj6vIU4VgAs5IeR4mf6FciALxJRhrq8yDCFNGZbD-rX5PMJpxZu3umn-_Pr5uLtv97_vHnbbfeuZZKWVnXeiGz1wZMYoazpraWfUoJTVlvPRC238KJTTXYeOO8cEl0iFtaClQrFpHl65Q4Jjv-QwQ_7fJwj9yyLlqYdcbThh76W0XrBqJEjpwFiNjInBGm_oiGyorNtXls9pXTOO7zxG-0sY_ccwxDMsFX-r</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tassoker, Melek</creator><creator>Hakli, Huseyin</creator><creator>Yaman, Metin</creator><creator>Ekmekcı, Sema</creator><creator>Incekara, Senanur</creator><creator>Kamaci, Serhat</creator><creator>Ozturk, Busra</creator><general>Balkan Stomatological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</title><author>Tassoker, Melek ; Hakli, Huseyin ; Yaman, Metin ; Ekmekcı, Sema ; Incekara, Senanur ; Kamaci, Serhat ; Ozturk, Busra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-46cb36fca2e1885986990685d5597922fc378cf35b766eb2bb1324e0399a745e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep learning</topic><topic>degeneration</topic><topic>panoramic radiography</topic><topic>temporomandibular joint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tassoker, Melek</creatorcontrib><creatorcontrib>Hakli, Huseyin</creatorcontrib><creatorcontrib>Yaman, Metin</creatorcontrib><creatorcontrib>Ekmekcı, Sema</creatorcontrib><creatorcontrib>Incekara, Senanur</creatorcontrib><creatorcontrib>Kamaci, Serhat</creatorcontrib><creatorcontrib>Ozturk, Busra</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Balkan Journal of Dental Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tassoker, Melek</au><au>Hakli, Huseyin</au><au>Yaman, Metin</au><au>Ekmekcı, Sema</au><au>Incekara, Senanur</au><au>Kamaci, Serhat</au><au>Ozturk, Busra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs</atitle><jtitle>Balkan Journal of Dental Medicine</jtitle><date>2024</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>99</spage><epage>116</epage><pages>99-116</pages><issn>2335-0245</issn><eissn>2738-0807</eissn><eissn>2335-0245</eissn><abstract>Background/Aim: The temporomandibular joint (TMJ) is a complex anatomical region composed of the mandibular condyle located in the glenoid fossa of the temporal bone and covered with fibrous connective tissue. Excessive and continuous forces lead to progressive degeneration of the bony surfaces of the TMJ. The aim of this study is to determine the success of automatic detection of degenerative changes detected on panoramic radiographs in the TMJ region with deep learning method. Material and Methods: Panoramic images of 1068 patients (1000 with normal TMJ appearance and 68 with TMJ degeneration) over 18 years of age were included in the study. CVAT, open-source annotation tool (https://www.cvat.ai/) was used for labeling image data. All images were resized using the bilinear interpolation method. With the using data augmentation techniques, the number of images data reached 1480. BSRGAN model was applied to the data to increase the resolution of the data. YOLOv5, YOLOv7 and YOLOv8 algorithms were used for TMJ degeneration detection. TP, FP, TN, FN, accuracy, precision, recall, F1-score and AUC (Area Under the Curve) metrics were used for statistical analysis. Results: YOLOv5s training resulted in 94.40% accuracy, 81.63% precision, 86.96% sensitivity, 84.21% F1 score and 91.45% AUC. YOLOv7 training resulted in 99.63% accuracy, 97.87% precision, 100% sensitivity, 98.92% F1 Score and 99.77% AUC. YOLOv8 training resulted 96.64% accuracy, 91.11% precision, 89.13% sensitivity, 90.11% F1 Score and 93.66% AUC. Conclusions: All three algorithms have high success rates, with the best results obtained in YOLOv7.</abstract><pub>Balkan Stomatological Society</pub><doi>10.5937/bjdm2402099T</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2335-0245
ispartof Balkan Journal of Dental Medicine, 2024, Vol.28 (2), p.99-116
issn 2335-0245
2738-0807
2335-0245
language eng
recordid cdi_crossref_primary_10_5937_bjdm2402099T
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects deep learning
degeneration
panoramic radiography
temporomandibular joint
title Automatic detection of degenerative changes in the temporomandibular joint region using deep learning with panoramic radiographs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20degenerative%20changes%20in%20the%20temporomandibular%20joint%20region%20using%20deep%20learning%20with%20panoramic%20radiographs&rft.jtitle=Balkan%20Journal%20of%20Dental%20Medicine&rft.au=Tassoker,%20Melek&rft.date=2024&rft.volume=28&rft.issue=2&rft.spage=99&rft.epage=116&rft.pages=99-116&rft.issn=2335-0245&rft.eissn=2738-0807&rft_id=info:doi/10.5937/bjdm2402099T&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c449c31099a44ba897e113d98c80fe1d&rfr_iscdi=true