Clustering based on the archetypal analysis

Archetypal analysis is a dimensionality reduction technique, which is based on finding a small number of representative elements, called archetypes. The observations are then approximated by convex combinations of the archetypes. The coefficients of the convex combinations can be therefore interpret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied economics 2024, Vol.21 (1), p.110-120
1. Verfasser: Stehlíková, Beáta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 1
container_start_page 110
container_title European journal of applied economics
container_volume 21
creator Stehlíková, Beáta
description Archetypal analysis is a dimensionality reduction technique, which is based on finding a small number of representative elements, called archetypes. The observations are then approximated by convex combinations of the archetypes. The coefficients of the convex combinations can be therefore interpreted as probabilities of discrete random variables. The values of the variables identify the classes, represented by the archetypes, to which the observation belongs. Based on this interpretation, we propose to use the Hellinger distance between probability distributions to measure the distance between the observations in the dataset and to use it as an input to clustering. We apply this procedure to monthly data of zero-coupon yield curves in 2003-2022. We identify the archetypal yield curves and cluster the observed curves into six clusters. Since the observations are measured in time, the resulting clustering also gives a segmentation of the time period under consideration.
doi_str_mv 10.5937/EJAE21-45523
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5937_EJAE21_45523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5937_EJAE21_45523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c753-12e65a158a459aaeb82c9fedd2c0a77c9f46490165afc60f35a0206f9e4b02f53</originalsourceid><addsrcrecordid>eNotj71OwzAURi1EJarSjQfIDobrn-vEYxUFCqrUpXt049g0KKSVHYa8PYF2-s7w6UiHsQcBz2hV_lJ9bCopuEaU6oYtpQbDlRR4e2WJRXHH1il9AYDIUWmrluyx7H_S6GM3fGYNJd9mpyEbjz6j6I5-nM7UZzRQP6Uu3bNFoD759XVX7PBaHcot3-3f3svNjrvZyoX0BklgQRotkW8K6WzwbSsdUJ7PrI22IOZTcAaCQgIJJlivG5AB1Yo9XbQunlKKPtTn2H1TnGoB9V9qfUmt_1PVLxwcRWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clustering based on the archetypal analysis</title><source>EBSCOhost Business Source Complete</source><creator>Stehlíková, Beáta</creator><creatorcontrib>Stehlíková, Beáta</creatorcontrib><description>Archetypal analysis is a dimensionality reduction technique, which is based on finding a small number of representative elements, called archetypes. The observations are then approximated by convex combinations of the archetypes. The coefficients of the convex combinations can be therefore interpreted as probabilities of discrete random variables. The values of the variables identify the classes, represented by the archetypes, to which the observation belongs. Based on this interpretation, we propose to use the Hellinger distance between probability distributions to measure the distance between the observations in the dataset and to use it as an input to clustering. We apply this procedure to monthly data of zero-coupon yield curves in 2003-2022. We identify the archetypal yield curves and cluster the observed curves into six clusters. Since the observations are measured in time, the resulting clustering also gives a segmentation of the time period under consideration.</description><identifier>ISSN: 2406-2588</identifier><identifier>EISSN: 2406-3215</identifier><identifier>DOI: 10.5937/EJAE21-45523</identifier><language>eng</language><ispartof>European journal of applied economics, 2024, Vol.21 (1), p.110-120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c753-12e65a158a459aaeb82c9fedd2c0a77c9f46490165afc60f35a0206f9e4b02f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Stehlíková, Beáta</creatorcontrib><title>Clustering based on the archetypal analysis</title><title>European journal of applied economics</title><description>Archetypal analysis is a dimensionality reduction technique, which is based on finding a small number of representative elements, called archetypes. The observations are then approximated by convex combinations of the archetypes. The coefficients of the convex combinations can be therefore interpreted as probabilities of discrete random variables. The values of the variables identify the classes, represented by the archetypes, to which the observation belongs. Based on this interpretation, we propose to use the Hellinger distance between probability distributions to measure the distance between the observations in the dataset and to use it as an input to clustering. We apply this procedure to monthly data of zero-coupon yield curves in 2003-2022. We identify the archetypal yield curves and cluster the observed curves into six clusters. Since the observations are measured in time, the resulting clustering also gives a segmentation of the time period under consideration.</description><issn>2406-2588</issn><issn>2406-3215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAURi1EJarSjQfIDobrn-vEYxUFCqrUpXt049g0KKSVHYa8PYF2-s7w6UiHsQcBz2hV_lJ9bCopuEaU6oYtpQbDlRR4e2WJRXHH1il9AYDIUWmrluyx7H_S6GM3fGYNJd9mpyEbjz6j6I5-nM7UZzRQP6Uu3bNFoD759XVX7PBaHcot3-3f3svNjrvZyoX0BklgQRotkW8K6WzwbSsdUJ7PrI22IOZTcAaCQgIJJlivG5AB1Yo9XbQunlKKPtTn2H1TnGoB9V9qfUmt_1PVLxwcRWg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Stehlíková, Beáta</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Clustering based on the archetypal analysis</title><author>Stehlíková, Beáta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c753-12e65a158a459aaeb82c9fedd2c0a77c9f46490165afc60f35a0206f9e4b02f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stehlíková, Beáta</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stehlíková, Beáta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering based on the archetypal analysis</atitle><jtitle>European journal of applied economics</jtitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>110</spage><epage>120</epage><pages>110-120</pages><issn>2406-2588</issn><eissn>2406-3215</eissn><abstract>Archetypal analysis is a dimensionality reduction technique, which is based on finding a small number of representative elements, called archetypes. The observations are then approximated by convex combinations of the archetypes. The coefficients of the convex combinations can be therefore interpreted as probabilities of discrete random variables. The values of the variables identify the classes, represented by the archetypes, to which the observation belongs. Based on this interpretation, we propose to use the Hellinger distance between probability distributions to measure the distance between the observations in the dataset and to use it as an input to clustering. We apply this procedure to monthly data of zero-coupon yield curves in 2003-2022. We identify the archetypal yield curves and cluster the observed curves into six clusters. Since the observations are measured in time, the resulting clustering also gives a segmentation of the time period under consideration.</abstract><doi>10.5937/EJAE21-45523</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2406-2588
ispartof European journal of applied economics, 2024, Vol.21 (1), p.110-120
issn 2406-2588
2406-3215
language eng
recordid cdi_crossref_primary_10_5937_EJAE21_45523
source EBSCOhost Business Source Complete
title Clustering based on the archetypal analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20based%20on%20the%20archetypal%20analysis&rft.jtitle=European%20journal%20of%20applied%20economics&rft.au=Stehl%C3%ADkov%C3%A1,%20Be%C3%A1ta&rft.date=2024&rft.volume=21&rft.issue=1&rft.spage=110&rft.epage=120&rft.pages=110-120&rft.issn=2406-2588&rft.eissn=2406-3215&rft_id=info:doi/10.5937/EJAE21-45523&rft_dat=%3Ccrossref%3E10_5937_EJAE21_45523%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true