A distribuição Lindley potência inversa: diferentes métodos de estimação
The identification of outliers plays an important role in the statistical analysis, since such observations may contain important information regarding the hypotheses of the study. If classical statistical models are blindly applied to data containing atypical values, the results may be misleading a...
Gespeichert in:
Veröffentlicht in: | Ciência e natura 2018-03, Vol.40, p.24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 24 |
container_title | Ciência e natura |
container_volume | 40 |
creator | Menezes, André Felipe Berdusco Mazucheli, Josmar Barco, Kelly Vanessa Parede |
description | The identification of outliers plays an important role in the statistical analysis, since such observations may contain important information regarding the hypotheses of the study. If classical statistical models are blindly applied to data containing atypical values, the results may be misleading and mistaken decisions can be made. Moreover, in practical situations, the outliers themselves are often the special points of interest and their identification may be the main objective of the investigation. In this way, it was proposed to propose a technique of detection of multivariate outliers, based on cluster analysis and to compare this technique with the method of identification of outliers via Mahalanobis Distance. For data generation, Monte Carlo method simulation and the mixed multivariate normal distribution technique were used. The results presented in the simulations showed that the proposed method was superior to the Mahalanobis method for both sensitivity and specificity, that is, it presented greater ability to correctly diagnose outliers and non-outliers individuals. In addition, the proposed methodology was illustrated with an application in real data from the health area. |
doi_str_mv | 10.5902/2179460X27500 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5902_2179460X27500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5902_2179460X27500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1210-a78b69fb122b89eeaa306cd9887b5fe855f5ddd0e969ff7f6fd51353c79e7d8e3</originalsourceid><addsrcrecordid>eNpVkM1KxDAUhYMoWMZZus8LVG8S8-duGPyDohsFdyVtbiAy0w5JFeZ5XIi-Rl_MVt14Npdz-O7lcgg5ZXAmLfBzzrS9UPDMtQQ4IMXsyzk4JAUwgNII0MdkmfMLTFJcaSYKcr-iPuYhxeY1jh_je0-r2PkN7umuH8avro2Oxu4NU3aXExkwYTdgptvxc-h9n6lHinmIW_ezfUKOgttkXP7NBXm6vnpc35bVw83delWVLeMMSqdNo2xoGOeNsYjOCVCtt8boRgY0UgbpvQe0ExV0UMFLJqRotUXtDYoFKX_vtqnPOWGod2n6Ie1rBvXcR_2vD_ENcaFXhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A distribuição Lindley potência inversa: diferentes métodos de estimação</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Menezes, André Felipe Berdusco ; Mazucheli, Josmar ; Barco, Kelly Vanessa Parede</creator><creatorcontrib>Menezes, André Felipe Berdusco ; Mazucheli, Josmar ; Barco, Kelly Vanessa Parede</creatorcontrib><description>The identification of outliers plays an important role in the statistical analysis, since such observations may contain important information regarding the hypotheses of the study. If classical statistical models are blindly applied to data containing atypical values, the results may be misleading and mistaken decisions can be made. Moreover, in practical situations, the outliers themselves are often the special points of interest and their identification may be the main objective of the investigation. In this way, it was proposed to propose a technique of detection of multivariate outliers, based on cluster analysis and to compare this technique with the method of identification of outliers via Mahalanobis Distance. For data generation, Monte Carlo method simulation and the mixed multivariate normal distribution technique were used. The results presented in the simulations showed that the proposed method was superior to the Mahalanobis method for both sensitivity and specificity, that is, it presented greater ability to correctly diagnose outliers and non-outliers individuals. In addition, the proposed methodology was illustrated with an application in real data from the health area.</description><identifier>ISSN: 0100-8307</identifier><identifier>EISSN: 2179-460X</identifier><identifier>DOI: 10.5902/2179460X27500</identifier><language>eng</language><ispartof>Ciência e natura, 2018-03, Vol.40, p.24</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1210-a78b69fb122b89eeaa306cd9887b5fe855f5ddd0e969ff7f6fd51353c79e7d8e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Menezes, André Felipe Berdusco</creatorcontrib><creatorcontrib>Mazucheli, Josmar</creatorcontrib><creatorcontrib>Barco, Kelly Vanessa Parede</creatorcontrib><title>A distribuição Lindley potência inversa: diferentes métodos de estimação</title><title>Ciência e natura</title><description>The identification of outliers plays an important role in the statistical analysis, since such observations may contain important information regarding the hypotheses of the study. If classical statistical models are blindly applied to data containing atypical values, the results may be misleading and mistaken decisions can be made. Moreover, in practical situations, the outliers themselves are often the special points of interest and their identification may be the main objective of the investigation. In this way, it was proposed to propose a technique of detection of multivariate outliers, based on cluster analysis and to compare this technique with the method of identification of outliers via Mahalanobis Distance. For data generation, Monte Carlo method simulation and the mixed multivariate normal distribution technique were used. The results presented in the simulations showed that the proposed method was superior to the Mahalanobis method for both sensitivity and specificity, that is, it presented greater ability to correctly diagnose outliers and non-outliers individuals. In addition, the proposed methodology was illustrated with an application in real data from the health area.</description><issn>0100-8307</issn><issn>2179-460X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkM1KxDAUhYMoWMZZus8LVG8S8-duGPyDohsFdyVtbiAy0w5JFeZ5XIi-Rl_MVt14Npdz-O7lcgg5ZXAmLfBzzrS9UPDMtQQ4IMXsyzk4JAUwgNII0MdkmfMLTFJcaSYKcr-iPuYhxeY1jh_je0-r2PkN7umuH8avro2Oxu4NU3aXExkwYTdgptvxc-h9n6lHinmIW_ezfUKOgttkXP7NBXm6vnpc35bVw83delWVLeMMSqdNo2xoGOeNsYjOCVCtt8boRgY0UgbpvQe0ExV0UMFLJqRotUXtDYoFKX_vtqnPOWGod2n6Ie1rBvXcR_2vD_ENcaFXhA</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Menezes, André Felipe Berdusco</creator><creator>Mazucheli, Josmar</creator><creator>Barco, Kelly Vanessa Parede</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180327</creationdate><title>A distribuição Lindley potência inversa: diferentes métodos de estimação</title><author>Menezes, André Felipe Berdusco ; Mazucheli, Josmar ; Barco, Kelly Vanessa Parede</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1210-a78b69fb122b89eeaa306cd9887b5fe855f5ddd0e969ff7f6fd51353c79e7d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Menezes, André Felipe Berdusco</creatorcontrib><creatorcontrib>Mazucheli, Josmar</creatorcontrib><creatorcontrib>Barco, Kelly Vanessa Parede</creatorcontrib><collection>CrossRef</collection><jtitle>Ciência e natura</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menezes, André Felipe Berdusco</au><au>Mazucheli, Josmar</au><au>Barco, Kelly Vanessa Parede</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A distribuição Lindley potência inversa: diferentes métodos de estimação</atitle><jtitle>Ciência e natura</jtitle><date>2018-03-27</date><risdate>2018</risdate><volume>40</volume><spage>24</spage><pages>24-</pages><issn>0100-8307</issn><eissn>2179-460X</eissn><abstract>The identification of outliers plays an important role in the statistical analysis, since such observations may contain important information regarding the hypotheses of the study. If classical statistical models are blindly applied to data containing atypical values, the results may be misleading and mistaken decisions can be made. Moreover, in practical situations, the outliers themselves are often the special points of interest and their identification may be the main objective of the investigation. In this way, it was proposed to propose a technique of detection of multivariate outliers, based on cluster analysis and to compare this technique with the method of identification of outliers via Mahalanobis Distance. For data generation, Monte Carlo method simulation and the mixed multivariate normal distribution technique were used. The results presented in the simulations showed that the proposed method was superior to the Mahalanobis method for both sensitivity and specificity, that is, it presented greater ability to correctly diagnose outliers and non-outliers individuals. In addition, the proposed methodology was illustrated with an application in real data from the health area.</abstract><doi>10.5902/2179460X27500</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0100-8307 |
ispartof | Ciência e natura, 2018-03, Vol.40, p.24 |
issn | 0100-8307 2179-460X |
language | eng |
recordid | cdi_crossref_primary_10_5902_2179460X27500 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | A distribuição Lindley potência inversa: diferentes métodos de estimação |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20distribui%C3%A7%C3%A3o%20Lindley%20pot%C3%AAncia%20inversa:%20diferentes%20m%C3%A9todos%20de%20estima%C3%A7%C3%A3o&rft.jtitle=Ci%C3%AAncia%20e%20natura&rft.au=Menezes,%20Andr%C3%A9%20Felipe%20Berdusco&rft.date=2018-03-27&rft.volume=40&rft.spage=24&rft.pages=24-&rft.issn=0100-8307&rft.eissn=2179-460X&rft_id=info:doi/10.5902/2179460X27500&rft_dat=%3Ccrossref%3E10_5902_2179460X27500%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |