Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent

Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2021-08, Vol.2021 (1-104), p.66
Hauptverfasser: Lin, Xiaolu, Zheng, Shenzhou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1-104
container_start_page 66
container_title Electronic journal of differential equations
container_volume 2021
creator Lin, Xiaolu
Zheng, Shenzhou
description Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0
doi_str_mv 10.58997/ejde.2021.66
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_58997_ejde_2021_66</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_58997_ejde_2021_66</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqUwsnsEiRR_xYlHVAFFFDEAc-Q4rxVXaRxst5CVX04LDEx3J52e4UHonJJZXipVXMOqgRkjjM6kPEATSgqWSano4b9-jE5iXBFClWBigr6eNl1yQ-eMSyPWfYN1HNdD8skZXEOrt84H7C2Ovtsk5_uIk8c2aLMfusMXw9X7Zfbogmlbby1O4wB4CL7uYB3xh0stNsHtaLvvi699B9tsoUMzYvgcfA99OkVHVncRzv5yit7ubl_ni2z5fP8wv1lmhjIqM1XUpeESgEle5pyIosllrQwYkgOl1FjKS9ZoJRouZGE4UURYMJwbZgRIPkXZL9cEH2MAWw3BrXUYK0qqH4HVXmC1F1hJyb8BjohnJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Xiaolu ; Zheng, Shenzhou</creator><creatorcontrib>Lin, Xiaolu ; Zheng, Shenzhou</creatorcontrib><description><![CDATA[Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0<s<1\), \(1\le r<q<p\), \(0\le\alpha<ps<N\) and a positive parameter \(\lambda\), we consider the fractional \((p,q)\)-Laplacian problems involving a critical Sobolev-Hardy exponent. This model comes from a nonlocal problem of Kirchhoff type $$\displaylines{ \big(a+b[u]_{s,p}^{(\theta-1)p}\big)(-\Delta)_{p}^{s}u+(-\Delta)_{q}^{s}u =\frac{|u|^{p_{s}^{*}(\alpha)-2}u}{|x|^{\alpha}}+\lambda f(x)\frac{|u|^{r-2}u}{|x|^{c}}\quad \hbox{in }\Omega,\cr u=0\quad\text{in }\mathbb{R}^{N}\setminus\Omega, }$$ where \(a,b>0\), \(c<sr+N(1-r/p)\), \(\theta\in(1,p_{s}^{*}(\alpha)/p)\) and \(p_{s}^{*}(\alpha)\) is critical Sobolev-Hardy exponent. For a given suitable \(f(x)\), we prove that there are least two nontrivial solutions for small \(\lambda\), by way of the mountain pass theorem and Ekeland's variational principle. Furthermore, we prove that these two solutions converge to two solutions of the limiting problem as \(a\to 0^{+}\). For the limiting problem, we show the existence of infinitely many solutions, and the sequence tends to zero when \(\lambda\) belongs to a suitable range. For more information see https://ejde.math.txstate.edu/Volumes/2021/66/abstr.html]]></description><identifier>ISSN: 1072-6691</identifier><identifier>EISSN: 1072-6691</identifier><identifier>DOI: 10.58997/ejde.2021.66</identifier><language>eng</language><ispartof>Electronic journal of differential equations, 2021-08, Vol.2021 (1-104), p.66</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</citedby><cites>FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Xiaolu</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><title>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</title><title>Electronic journal of differential equations</title><description><![CDATA[Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0<s<1\), \(1\le r<q<p\), \(0\le\alpha<ps<N\) and a positive parameter \(\lambda\), we consider the fractional \((p,q)\)-Laplacian problems involving a critical Sobolev-Hardy exponent. This model comes from a nonlocal problem of Kirchhoff type $$\displaylines{ \big(a+b[u]_{s,p}^{(\theta-1)p}\big)(-\Delta)_{p}^{s}u+(-\Delta)_{q}^{s}u =\frac{|u|^{p_{s}^{*}(\alpha)-2}u}{|x|^{\alpha}}+\lambda f(x)\frac{|u|^{r-2}u}{|x|^{c}}\quad \hbox{in }\Omega,\cr u=0\quad\text{in }\mathbb{R}^{N}\setminus\Omega, }$$ where \(a,b>0\), \(c<sr+N(1-r/p)\), \(\theta\in(1,p_{s}^{*}(\alpha)/p)\) and \(p_{s}^{*}(\alpha)\) is critical Sobolev-Hardy exponent. For a given suitable \(f(x)\), we prove that there are least two nontrivial solutions for small \(\lambda\), by way of the mountain pass theorem and Ekeland's variational principle. Furthermore, we prove that these two solutions converge to two solutions of the limiting problem as \(a\to 0^{+}\). For the limiting problem, we show the existence of infinitely many solutions, and the sequence tends to zero when \(\lambda\) belongs to a suitable range. For more information see https://ejde.math.txstate.edu/Volumes/2021/66/abstr.html]]></description><issn>1072-6691</issn><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAYhC0EEqUwsnsEiRR_xYlHVAFFFDEAc-Q4rxVXaRxst5CVX04LDEx3J52e4UHonJJZXipVXMOqgRkjjM6kPEATSgqWSano4b9-jE5iXBFClWBigr6eNl1yQ-eMSyPWfYN1HNdD8skZXEOrt84H7C2Ovtsk5_uIk8c2aLMfusMXw9X7Zfbogmlbby1O4wB4CL7uYB3xh0stNsHtaLvvi699B9tsoUMzYvgcfA99OkVHVncRzv5yit7ubl_ni2z5fP8wv1lmhjIqM1XUpeESgEle5pyIosllrQwYkgOl1FjKS9ZoJRouZGE4UURYMJwbZgRIPkXZL9cEH2MAWw3BrXUYK0qqH4HVXmC1F1hJyb8BjohnJQ</recordid><startdate>20210810</startdate><enddate>20210810</enddate><creator>Lin, Xiaolu</creator><creator>Zheng, Shenzhou</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210810</creationdate><title>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</title><author>Lin, Xiaolu ; Zheng, Shenzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xiaolu</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xiaolu</au><au>Zheng, Shenzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2021-08-10</date><risdate>2021</risdate><volume>2021</volume><issue>1-104</issue><spage>66</spage><pages>66-</pages><issn>1072-6691</issn><eissn>1072-6691</eissn><abstract><![CDATA[Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0<s<1\), \(1\le r<q<p\), \(0\le\alpha<ps<N\) and a positive parameter \(\lambda\), we consider the fractional \((p,q)\)-Laplacian problems involving a critical Sobolev-Hardy exponent. This model comes from a nonlocal problem of Kirchhoff type $$\displaylines{ \big(a+b[u]_{s,p}^{(\theta-1)p}\big)(-\Delta)_{p}^{s}u+(-\Delta)_{q}^{s}u =\frac{|u|^{p_{s}^{*}(\alpha)-2}u}{|x|^{\alpha}}+\lambda f(x)\frac{|u|^{r-2}u}{|x|^{c}}\quad \hbox{in }\Omega,\cr u=0\quad\text{in }\mathbb{R}^{N}\setminus\Omega, }$$ where \(a,b>0\), \(c<sr+N(1-r/p)\), \(\theta\in(1,p_{s}^{*}(\alpha)/p)\) and \(p_{s}^{*}(\alpha)\) is critical Sobolev-Hardy exponent. For a given suitable \(f(x)\), we prove that there are least two nontrivial solutions for small \(\lambda\), by way of the mountain pass theorem and Ekeland's variational principle. Furthermore, we prove that these two solutions converge to two solutions of the limiting problem as \(a\to 0^{+}\). For the limiting problem, we show the existence of infinitely many solutions, and the sequence tends to zero when \(\lambda\) belongs to a suitable range. For more information see https://ejde.math.txstate.edu/Volumes/2021/66/abstr.html]]></abstract><doi>10.58997/ejde.2021.66</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-6691
ispartof Electronic journal of differential equations, 2021-08, Vol.2021 (1-104), p.66
issn 1072-6691
1072-6691
language eng
recordid cdi_crossref_primary_10_58997_ejde_2021_66
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20and%20asymptotic%20behavior%20of%20solutions%20to%20fractional%20(p,q)-Kirchhoff%20type%20problems%20with%20critical%20Sobolev-Hardy%20exponent&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Lin,%20Xiaolu&rft.date=2021-08-10&rft.volume=2021&rft.issue=1-104&rft.spage=66&rft.pages=66-&rft.issn=1072-6691&rft.eissn=1072-6691&rft_id=info:doi/10.58997/ejde.2021.66&rft_dat=%3Ccrossref%3E10_58997_ejde_2021_66%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true