Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent
Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2021-08, Vol.2021 (1-104), p.66 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1-104 |
container_start_page | 66 |
container_title | Electronic journal of differential equations |
container_volume | 2021 |
creator | Lin, Xiaolu Zheng, Shenzhou |
description | Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0 |
doi_str_mv | 10.58997/ejde.2021.66 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_58997_ejde_2021_66</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_58997_ejde_2021_66</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqUwsnsEiRR_xYlHVAFFFDEAc-Q4rxVXaRxst5CVX04LDEx3J52e4UHonJJZXipVXMOqgRkjjM6kPEATSgqWSano4b9-jE5iXBFClWBigr6eNl1yQ-eMSyPWfYN1HNdD8skZXEOrt84H7C2Ovtsk5_uIk8c2aLMfusMXw9X7Zfbogmlbby1O4wB4CL7uYB3xh0stNsHtaLvvi699B9tsoUMzYvgcfA99OkVHVncRzv5yit7ubl_ni2z5fP8wv1lmhjIqM1XUpeESgEle5pyIosllrQwYkgOl1FjKS9ZoJRouZGE4UURYMJwbZgRIPkXZL9cEH2MAWw3BrXUYK0qqH4HVXmC1F1hJyb8BjohnJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Xiaolu ; Zheng, Shenzhou</creator><creatorcontrib>Lin, Xiaolu ; Zheng, Shenzhou</creatorcontrib><description><![CDATA[Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0<s<1\), \(1\le r<q<p\), \(0\le\alpha<ps<N\) and a positive parameter \(\lambda\), we consider the fractional \((p,q)\)-Laplacian problems involving a critical Sobolev-Hardy exponent. This model comes from a nonlocal problem of Kirchhoff type $$\displaylines{ \big(a+b[u]_{s,p}^{(\theta-1)p}\big)(-\Delta)_{p}^{s}u+(-\Delta)_{q}^{s}u =\frac{|u|^{p_{s}^{*}(\alpha)-2}u}{|x|^{\alpha}}+\lambda f(x)\frac{|u|^{r-2}u}{|x|^{c}}\quad \hbox{in }\Omega,\cr u=0\quad\text{in }\mathbb{R}^{N}\setminus\Omega, }$$ where \(a,b>0\), \(c<sr+N(1-r/p)\), \(\theta\in(1,p_{s}^{*}(\alpha)/p)\) and \(p_{s}^{*}(\alpha)\) is critical Sobolev-Hardy exponent. For a given suitable \(f(x)\), we prove that there are least two nontrivial solutions for small \(\lambda\), by way of the mountain pass theorem and Ekeland's variational principle. Furthermore, we prove that these two solutions converge to two solutions of the limiting problem as \(a\to 0^{+}\). For the limiting problem, we show the existence of infinitely many solutions, and the sequence tends to zero when \(\lambda\) belongs to a suitable range. For more information see https://ejde.math.txstate.edu/Volumes/2021/66/abstr.html]]></description><identifier>ISSN: 1072-6691</identifier><identifier>EISSN: 1072-6691</identifier><identifier>DOI: 10.58997/ejde.2021.66</identifier><language>eng</language><ispartof>Electronic journal of differential equations, 2021-08, Vol.2021 (1-104), p.66</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</citedby><cites>FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Xiaolu</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><title>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</title><title>Electronic journal of differential equations</title><description><![CDATA[Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0<s<1\), \(1\le r<q<p\), \(0\le\alpha<ps<N\) and a positive parameter \(\lambda\), we consider the fractional \((p,q)\)-Laplacian problems involving a critical Sobolev-Hardy exponent. This model comes from a nonlocal problem of Kirchhoff type $$\displaylines{ \big(a+b[u]_{s,p}^{(\theta-1)p}\big)(-\Delta)_{p}^{s}u+(-\Delta)_{q}^{s}u =\frac{|u|^{p_{s}^{*}(\alpha)-2}u}{|x|^{\alpha}}+\lambda f(x)\frac{|u|^{r-2}u}{|x|^{c}}\quad \hbox{in }\Omega,\cr u=0\quad\text{in }\mathbb{R}^{N}\setminus\Omega, }$$ where \(a,b>0\), \(c<sr+N(1-r/p)\), \(\theta\in(1,p_{s}^{*}(\alpha)/p)\) and \(p_{s}^{*}(\alpha)\) is critical Sobolev-Hardy exponent. For a given suitable \(f(x)\), we prove that there are least two nontrivial solutions for small \(\lambda\), by way of the mountain pass theorem and Ekeland's variational principle. Furthermore, we prove that these two solutions converge to two solutions of the limiting problem as \(a\to 0^{+}\). For the limiting problem, we show the existence of infinitely many solutions, and the sequence tends to zero when \(\lambda\) belongs to a suitable range. For more information see https://ejde.math.txstate.edu/Volumes/2021/66/abstr.html]]></description><issn>1072-6691</issn><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAYhC0EEqUwsnsEiRR_xYlHVAFFFDEAc-Q4rxVXaRxst5CVX04LDEx3J52e4UHonJJZXipVXMOqgRkjjM6kPEATSgqWSano4b9-jE5iXBFClWBigr6eNl1yQ-eMSyPWfYN1HNdD8skZXEOrt84H7C2Ovtsk5_uIk8c2aLMfusMXw9X7Zfbogmlbby1O4wB4CL7uYB3xh0stNsHtaLvvi699B9tsoUMzYvgcfA99OkVHVncRzv5yit7ubl_ni2z5fP8wv1lmhjIqM1XUpeESgEle5pyIosllrQwYkgOl1FjKS9ZoJRouZGE4UURYMJwbZgRIPkXZL9cEH2MAWw3BrXUYK0qqH4HVXmC1F1hJyb8BjohnJQ</recordid><startdate>20210810</startdate><enddate>20210810</enddate><creator>Lin, Xiaolu</creator><creator>Zheng, Shenzhou</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210810</creationdate><title>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</title><author>Lin, Xiaolu ; Zheng, Shenzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1216-97b8c36ee263853047d56b9cec05e111cf1382da94d3467c30904fec33c2c4e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xiaolu</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xiaolu</au><au>Zheng, Shenzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2021-08-10</date><risdate>2021</risdate><volume>2021</volume><issue>1-104</issue><spage>66</spage><pages>66-</pages><issn>1072-6691</issn><eissn>1072-6691</eissn><abstract><![CDATA[Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded domain with smooth boundary and \(0\in\Omega\). For \(0<s<1\), \(1\le r<q<p\), \(0\le\alpha<ps<N\) and a positive parameter \(\lambda\), we consider the fractional \((p,q)\)-Laplacian problems involving a critical Sobolev-Hardy exponent. This model comes from a nonlocal problem of Kirchhoff type $$\displaylines{ \big(a+b[u]_{s,p}^{(\theta-1)p}\big)(-\Delta)_{p}^{s}u+(-\Delta)_{q}^{s}u =\frac{|u|^{p_{s}^{*}(\alpha)-2}u}{|x|^{\alpha}}+\lambda f(x)\frac{|u|^{r-2}u}{|x|^{c}}\quad \hbox{in }\Omega,\cr u=0\quad\text{in }\mathbb{R}^{N}\setminus\Omega, }$$ where \(a,b>0\), \(c<sr+N(1-r/p)\), \(\theta\in(1,p_{s}^{*}(\alpha)/p)\) and \(p_{s}^{*}(\alpha)\) is critical Sobolev-Hardy exponent. For a given suitable \(f(x)\), we prove that there are least two nontrivial solutions for small \(\lambda\), by way of the mountain pass theorem and Ekeland's variational principle. Furthermore, we prove that these two solutions converge to two solutions of the limiting problem as \(a\to 0^{+}\). For the limiting problem, we show the existence of infinitely many solutions, and the sequence tends to zero when \(\lambda\) belongs to a suitable range. For more information see https://ejde.math.txstate.edu/Volumes/2021/66/abstr.html]]></abstract><doi>10.58997/ejde.2021.66</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-6691 |
ispartof | Electronic journal of differential equations, 2021-08, Vol.2021 (1-104), p.66 |
issn | 1072-6691 1072-6691 |
language | eng |
recordid | cdi_crossref_primary_10_58997_ejde_2021_66 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Multiplicity and asymptotic behavior of solutions to fractional (p,q)-Kirchhoff type problems with critical Sobolev-Hardy exponent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20and%20asymptotic%20behavior%20of%20solutions%20to%20fractional%20(p,q)-Kirchhoff%20type%20problems%20with%20critical%20Sobolev-Hardy%20exponent&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Lin,%20Xiaolu&rft.date=2021-08-10&rft.volume=2021&rft.issue=1-104&rft.spage=66&rft.pages=66-&rft.issn=1072-6691&rft.eissn=1072-6691&rft_id=info:doi/10.58997/ejde.2021.66&rft_dat=%3Ccrossref%3E10_58997_ejde_2021_66%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |