Quantitative Non-Destructive Testing (NDT) of Submerged Civil Concrete Structures Using Remotely Operated Robotic Drones

Periodic inspection is of paramount importance to assess structural integrity and safety. Conventional concrete inspection procedures ranging from rebound hammer, to state-of-the-art ground penetrating radar and ultrasonic tomography focus on superstructures. Often, the part of the structure underwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E-journal of Nondestructive Testing 2022-09, Vol.27 (9)
Hauptverfasser: Venkatesh, Vishnu, Kodoth, Krishnaraj, Antony Jacob, Ashish, Ravichandran, Santhosh, Upadhyay, Vineet, Rajagopal, Prabhu, Balasubramaniam, Krishnan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periodic inspection is of paramount importance to assess structural integrity and safety. Conventional concrete inspection procedures ranging from rebound hammer, to state-of-the-art ground penetrating radar and ultrasonic tomography focus on superstructures. Often, the part of the structure underwater, is subject to significant levels of corrosion. Today, qualitative visual inspection of the submerged surface can be performed by diving teams, wherein internal defects often go undetected. Furthermore, divers are limited to shallow depths and face several risks, especially when visibility is poor and operating in confined spaces. Presently, there are few commercially available quantitative NDT techniques for submerged structures. This paper presents an alternate solution to inspection of submerged concrete structures — using lightweight remotely operated vehicles (ROV) manufactured by Planys Technologies to perform concrete NDT underwater. Rebound hammer and ultrasonic pulse velocity techniques, although elementary, have been redesigned for use on a submersible drone. Several challenges were addressed including long-range communication and data acquisition, marinizing transducers and pulser-receivers, obtaining measurements in water currents and over deformed surfaces. Planys’ ROVs carry payloads including high-definition cameras, lasers, sonar, and underwater positioning systems to improve data-acquisition quality and location tagging of defects. Key results from experimental studies in a laboratory on canonical specimens are presented. Furthermore, the technology has been successfully tested in a port — details of the structure, operational arrangement and sample results from the field trial are also presented. Following calibration procedures, ROV based underwater concrete NDT was used to acquire data from the structure in grids and subsequently, identify zones of potential non-homogeneity. Numerous challenges, including interpretation of the time traces obtained, and correlation of results to structural integrity and to structures above water, are discussed in the paper. This work will be of interest to asset owners in marine, water management and power generation industries.
ISSN:1435-4934
1435-4934
DOI:10.58286/27216