Comparison of different voxel size calibration strategies

Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E-journal of Nondestructive Testing 2019-03, Vol.24 (3)
Hauptverfasser: Katic, Marko, Barsic, Gorana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title E-journal of Nondestructive Testing
container_volume 24
creator Katic, Marko
Barsic, Gorana
description Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies.
doi_str_mv 10.58286/23709
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_58286_23709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_58286_23709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1669-79918065c707d940bf5ad43eb6cecb529ac191a2019c8cfd86b29407a1dcb65d3</originalsourceid><addsrcrecordid>eNpNjztLBDEURoMouKzrb0hlN3rzzi1l8AULNloPeUpkdmdJBlF_vcNqYfWd4vDBIeSSwbWy3OobLgzgCVkxKVQnUcjTf3xONq29AwC3KAyHFcF-2h1cLW3a0ynTWHJONe1n-jF9ppG28p1ocGPx1c1lcdq8QHorqV2Qs-zGljZ_uyav93cv_WO3fX546m-3XWBaY2cQmQWtggETUYLPykUpktchBa84usCQOQ4Mgw05Wu35ohnHYvBaRbEmV7-_oU6t1ZSHQy07V78GBsOxeTg2ix8jnkhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of different voxel size calibration strategies</title><source>DOAJ Directory of Open Access Journals</source><creator>Katic, Marko ; Barsic, Gorana</creator><creatorcontrib>Katic, Marko ; Barsic, Gorana ; University of Zagreb</creatorcontrib><description>Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies.</description><identifier>ISSN: 1435-4934</identifier><identifier>EISSN: 1435-4934</identifier><identifier>DOI: 10.58286/23709</identifier><language>eng</language><ispartof>E-journal of Nondestructive Testing, 2019-03, Vol.24 (3)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1669-79918065c707d940bf5ad43eb6cecb529ac191a2019c8cfd86b29407a1dcb65d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Katic, Marko</creatorcontrib><creatorcontrib>Barsic, Gorana</creatorcontrib><creatorcontrib>University of Zagreb</creatorcontrib><title>Comparison of different voxel size calibration strategies</title><title>E-journal of Nondestructive Testing</title><description>Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies.</description><issn>1435-4934</issn><issn>1435-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNjztLBDEURoMouKzrb0hlN3rzzi1l8AULNloPeUpkdmdJBlF_vcNqYfWd4vDBIeSSwbWy3OobLgzgCVkxKVQnUcjTf3xONq29AwC3KAyHFcF-2h1cLW3a0ynTWHJONe1n-jF9ppG28p1ocGPx1c1lcdq8QHorqV2Qs-zGljZ_uyav93cv_WO3fX546m-3XWBaY2cQmQWtggETUYLPykUpktchBa84usCQOQ4Mgw05Wu35ohnHYvBaRbEmV7-_oU6t1ZSHQy07V78GBsOxeTg2ix8jnkhI</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Katic, Marko</creator><creator>Barsic, Gorana</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201903</creationdate><title>Comparison of different voxel size calibration strategies</title><author>Katic, Marko ; Barsic, Gorana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1669-79918065c707d940bf5ad43eb6cecb529ac191a2019c8cfd86b29407a1dcb65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Katic, Marko</creatorcontrib><creatorcontrib>Barsic, Gorana</creatorcontrib><creatorcontrib>University of Zagreb</creatorcontrib><collection>CrossRef</collection><jtitle>E-journal of Nondestructive Testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katic, Marko</au><au>Barsic, Gorana</au><aucorp>University of Zagreb</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of different voxel size calibration strategies</atitle><jtitle>E-journal of Nondestructive Testing</jtitle><date>2019-03</date><risdate>2019</risdate><volume>24</volume><issue>3</issue><issn>1435-4934</issn><eissn>1435-4934</eissn><abstract>Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies.</abstract><doi>10.58286/23709</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-4934
ispartof E-journal of Nondestructive Testing, 2019-03, Vol.24 (3)
issn 1435-4934
1435-4934
language eng
recordid cdi_crossref_primary_10_58286_23709
source DOAJ Directory of Open Access Journals
title Comparison of different voxel size calibration strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20different%20voxel%20size%20calibration%20strategies&rft.jtitle=E-journal%20of%20Nondestructive%20Testing&rft.au=Katic,%20Marko&rft.aucorp=University%20of%20Zagreb&rft.date=2019-03&rft.volume=24&rft.issue=3&rft.issn=1435-4934&rft.eissn=1435-4934&rft_id=info:doi/10.58286/23709&rft_dat=%3Ccrossref%3E10_58286_23709%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true