Comparison of different voxel size calibration strategies
Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-poin...
Gespeichert in:
Veröffentlicht in: | E-journal of Nondestructive Testing 2019-03, Vol.24 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | E-journal of Nondestructive Testing |
container_volume | 24 |
creator | Katic, Marko Barsic, Gorana |
description | Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies. |
doi_str_mv | 10.58286/23709 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_58286_23709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_58286_23709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1669-79918065c707d940bf5ad43eb6cecb529ac191a2019c8cfd86b29407a1dcb65d3</originalsourceid><addsrcrecordid>eNpNjztLBDEURoMouKzrb0hlN3rzzi1l8AULNloPeUpkdmdJBlF_vcNqYfWd4vDBIeSSwbWy3OobLgzgCVkxKVQnUcjTf3xONq29AwC3KAyHFcF-2h1cLW3a0ynTWHJONe1n-jF9ppG28p1ocGPx1c1lcdq8QHorqV2Qs-zGljZ_uyav93cv_WO3fX546m-3XWBaY2cQmQWtggETUYLPykUpktchBa84usCQOQ4Mgw05Wu35ohnHYvBaRbEmV7-_oU6t1ZSHQy07V78GBsOxeTg2ix8jnkhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of different voxel size calibration strategies</title><source>DOAJ Directory of Open Access Journals</source><creator>Katic, Marko ; Barsic, Gorana</creator><creatorcontrib>Katic, Marko ; Barsic, Gorana ; University of Zagreb</creatorcontrib><description>Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies.</description><identifier>ISSN: 1435-4934</identifier><identifier>EISSN: 1435-4934</identifier><identifier>DOI: 10.58286/23709</identifier><language>eng</language><ispartof>E-journal of Nondestructive Testing, 2019-03, Vol.24 (3)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1669-79918065c707d940bf5ad43eb6cecb529ac191a2019c8cfd86b29407a1dcb65d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Katic, Marko</creatorcontrib><creatorcontrib>Barsic, Gorana</creatorcontrib><creatorcontrib>University of Zagreb</creatorcontrib><title>Comparison of different voxel size calibration strategies</title><title>E-journal of Nondestructive Testing</title><description>Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies.</description><issn>1435-4934</issn><issn>1435-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNjztLBDEURoMouKzrb0hlN3rzzi1l8AULNloPeUpkdmdJBlF_vcNqYfWd4vDBIeSSwbWy3OobLgzgCVkxKVQnUcjTf3xONq29AwC3KAyHFcF-2h1cLW3a0ynTWHJONe1n-jF9ppG28p1ocGPx1c1lcdq8QHorqV2Qs-zGljZ_uyav93cv_WO3fX546m-3XWBaY2cQmQWtggETUYLPykUpktchBa84usCQOQ4Mgw05Wu35ohnHYvBaRbEmV7-_oU6t1ZSHQy07V78GBsOxeTg2ix8jnkhI</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Katic, Marko</creator><creator>Barsic, Gorana</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201903</creationdate><title>Comparison of different voxel size calibration strategies</title><author>Katic, Marko ; Barsic, Gorana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1669-79918065c707d940bf5ad43eb6cecb529ac191a2019c8cfd86b29407a1dcb65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Katic, Marko</creatorcontrib><creatorcontrib>Barsic, Gorana</creatorcontrib><creatorcontrib>University of Zagreb</creatorcontrib><collection>CrossRef</collection><jtitle>E-journal of Nondestructive Testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katic, Marko</au><au>Barsic, Gorana</au><aucorp>University of Zagreb</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of different voxel size calibration strategies</atitle><jtitle>E-journal of Nondestructive Testing</jtitle><date>2019-03</date><risdate>2019</risdate><volume>24</volume><issue>3</issue><issn>1435-4934</issn><eissn>1435-4934</eissn><abstract>Coordinate measuring machines (CMM) are traditionally used in industry for verifying geometric dimensions and tolerances of parts. In the last decade X-ray computed tomography (CT) is being increasingly used in industry for dimensional analysis purposes as well. Tactile CMM is based on point-to-point collection of measurement data, while CT scans entire workpiece and generates a volumetric point cloud of measurement data. The influence of different approaches in gathering of data when using CMM and CT on calculation of voxel size is experimentally tested and discussed in this work and compared with other standard voxel size calibration options like use of reference standards and calibration of magnification axis. Several typical industrial workpieces are used to demonstrate the differences that arise because of different voxel size calibration strategies.</abstract><doi>10.58286/23709</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-4934 |
ispartof | E-journal of Nondestructive Testing, 2019-03, Vol.24 (3) |
issn | 1435-4934 1435-4934 |
language | eng |
recordid | cdi_crossref_primary_10_58286_23709 |
source | DOAJ Directory of Open Access Journals |
title | Comparison of different voxel size calibration strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20different%20voxel%20size%20calibration%20strategies&rft.jtitle=E-journal%20of%20Nondestructive%20Testing&rft.au=Katic,%20Marko&rft.aucorp=University%20of%20Zagreb&rft.date=2019-03&rft.volume=24&rft.issue=3&rft.issn=1435-4934&rft.eissn=1435-4934&rft_id=info:doi/10.58286/23709&rft_dat=%3Ccrossref%3E10_58286_23709%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |