GEOMETRIC QUANTIZATION OF INTEGRABLE SYSTEMS WITH HYPERBOLIC SINGULARITIES

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Fourier 2010, Vol.60 (1), p.51-85
Hauptverfasser: HAMILTON, Mark D, MIRANDA, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 51
container_title Annales de l'Institut Fourier
container_volume 60
creator HAMILTON, Mark D
MIRANDA, Eva
description
doi_str_mv 10.5802/aif.2517
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5802_aif_2517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22607937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-89eeb1a55c73405d2adfc0ff8959cee740399a97beacd3a06de5b217972cb1253</originalsourceid><addsrcrecordid>eNo90EFLwzAYxvEgCs4p-BF6Ebx0vkmaZTl2I-siXatthsxLSdMEJlNHs4vf3o6Jp_fyf5_DD6F7DBM2A_Jkdn5CGOYXaIQ55zGjGC7RCCinMQg2vUY3IXwAYJEwPELPmSzXUldqEb1u0kKr91SrsojKZaQKLbMqnecyqre1lus6elN6Fa22L7Kal_nwUqsi2-RppbSS9S268mYf3N3fHaPNUurFKs7LTC3SPLZE4GM8E8612DBmOU2AdcR03oL3M8GEdY4nQIUwgrfO2I4amHaOtQRzwYltMWF0jB7Pu7b_DqF3vjn0u0_T_zQYmpNBMxg0J4MhfTinBxOs2fvefNld-O8JmQIXg8wvbqNV6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GEOMETRIC QUANTIZATION OF INTEGRABLE SYSTEMS WITH HYPERBOLIC SINGULARITIES</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>HAMILTON, Mark D ; MIRANDA, Eva</creator><creatorcontrib>HAMILTON, Mark D ; MIRANDA, Eva</creatorcontrib><identifier>ISSN: 0373-0956</identifier><identifier>EISSN: 1777-5310</identifier><identifier>DOI: 10.5802/aif.2517</identifier><identifier>CODEN: AIFUA7</identifier><language>eng</language><publisher>Grenoble: Association des annales de l'institut Fourier</publisher><subject>Exact sciences and technology ; Functional analysis ; General mathematics ; General, history and biography ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Annales de l'Institut Fourier, 2010, Vol.60 (1), p.51-85</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-89eeb1a55c73405d2adfc0ff8959cee740399a97beacd3a06de5b217972cb1253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22607937$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HAMILTON, Mark D</creatorcontrib><creatorcontrib>MIRANDA, Eva</creatorcontrib><title>GEOMETRIC QUANTIZATION OF INTEGRABLE SYSTEMS WITH HYPERBOLIC SINGULARITIES</title><title>Annales de l'Institut Fourier</title><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0373-0956</issn><issn>1777-5310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo90EFLwzAYxvEgCs4p-BF6Ebx0vkmaZTl2I-siXatthsxLSdMEJlNHs4vf3o6Jp_fyf5_DD6F7DBM2A_Jkdn5CGOYXaIQ55zGjGC7RCCinMQg2vUY3IXwAYJEwPELPmSzXUldqEb1u0kKr91SrsojKZaQKLbMqnecyqre1lus6elN6Fa22L7Kal_nwUqsi2-RppbSS9S268mYf3N3fHaPNUurFKs7LTC3SPLZE4GM8E8612DBmOU2AdcR03oL3M8GEdY4nQIUwgrfO2I4amHaOtQRzwYltMWF0jB7Pu7b_DqF3vjn0u0_T_zQYmpNBMxg0J4MhfTinBxOs2fvefNld-O8JmQIXg8wvbqNV6w</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>HAMILTON, Mark D</creator><creator>MIRANDA, Eva</creator><general>Association des annales de l'institut Fourier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>GEOMETRIC QUANTIZATION OF INTEGRABLE SYSTEMS WITH HYPERBOLIC SINGULARITIES</title><author>HAMILTON, Mark D ; MIRANDA, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-89eeb1a55c73405d2adfc0ff8959cee740399a97beacd3a06de5b217972cb1253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAMILTON, Mark D</creatorcontrib><creatorcontrib>MIRANDA, Eva</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Annales de l'Institut Fourier</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAMILTON, Mark D</au><au>MIRANDA, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEOMETRIC QUANTIZATION OF INTEGRABLE SYSTEMS WITH HYPERBOLIC SINGULARITIES</atitle><jtitle>Annales de l'Institut Fourier</jtitle><date>2010</date><risdate>2010</risdate><volume>60</volume><issue>1</issue><spage>51</spage><epage>85</epage><pages>51-85</pages><issn>0373-0956</issn><eissn>1777-5310</eissn><coden>AIFUA7</coden><cop>Grenoble</cop><pub>Association des annales de l'institut Fourier</pub><doi>10.5802/aif.2517</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0373-0956
ispartof Annales de l'Institut Fourier, 2010, Vol.60 (1), p.51-85
issn 0373-0956
1777-5310
language eng
recordid cdi_crossref_primary_10_5802_aif_2517
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; NUMDAM
subjects Exact sciences and technology
Functional analysis
General mathematics
General, history and biography
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title GEOMETRIC QUANTIZATION OF INTEGRABLE SYSTEMS WITH HYPERBOLIC SINGULARITIES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEOMETRIC%20QUANTIZATION%20OF%20INTEGRABLE%20SYSTEMS%20WITH%20HYPERBOLIC%20SINGULARITIES&rft.jtitle=Annales%20de%20l'Institut%20Fourier&rft.au=HAMILTON,%20Mark%20D&rft.date=2010&rft.volume=60&rft.issue=1&rft.spage=51&rft.epage=85&rft.pages=51-85&rft.issn=0373-0956&rft.eissn=1777-5310&rft.coden=AIFUA7&rft_id=info:doi/10.5802/aif.2517&rft_dat=%3Cpascalfrancis_cross%3E22607937%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true