CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode

Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2023/09/26, Vol.91(9), pp.097003-097003
Hauptverfasser: NAKAZATO, Ryosuke, MATSUMOTO, Keeko, YAMAGUCHI, Noboru, CAVALLO, Margherita, CROCELLÀ, Valentina, BONINO, Francesca, QUINTELIER, Matthias, HADERMANN, Joke, ROSERO-NAVARRO, Nataly Carolina, MIURA, Akira, TADANAGA, Kiyoharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 097003
container_issue 9
container_start_page 097003
container_title Denki kagaku oyobi kōgyō butsuri kagaku
container_volume 91
creator NAKAZATO, Ryosuke
MATSUMOTO, Keeko
YAMAGUCHI, Noboru
CAVALLO, Margherita
CROCELLÀ, Valentina
BONINO, Francesca
QUINTELIER, Matthias
HADERMANN, Joke
ROSERO-NAVARRO, Nataly Carolina
MIURA, Akira
TADANAGA, Kiyoharu
description Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
doi_str_mv 10.5796/electrochemistry.23-00080
format Article
fullrecord <record><control><sourceid>jstage_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_5796_electrochemistry_23_00080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_06ae8056dfd145349a084bf2f39e097b</doaj_id><sourcerecordid>article_electrochemistry_91_9_91_23_00080_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-be8134dad2ffbbf92c41ab417552d3c595c52c4338e88aa87c200e07ffd2e10b3</originalsourceid><addsrcrecordid>eNplkNtqGzEQhkVJoSb1O2wfQImOu9JlcBI7YDCU9qY36qw0stdsrCKtaf32XccHSnMzgp_5vhE_IV84u9ONre-xRz_k5Df42pUhH-6EpIwxwz6QieCmpkJpfkMmXCpFpVbiE5mWsh1XOLO1FXZCfs5Wonr6x-Ohr75i2PuhS7vqdzdsqh87-tBXSzhgxlA9pn3bY7U4hJz-dAHpMkEY8zkU-tjFuC9H8KwM-Jl8jNAXnJ7fW_L9-enbbEGXq_nL7GFJvar1QFs04y8DBBFj20YrvOLQKt5oLYL02mqvx0xKg8YAmMYLxpA1MQaBnLXylrycvCHB1v3K3Svkg0vQubcg5bWDPHS-R8dqQMN0HWLgSktlgRnVRhGlRWabo8ueXD6nUjLGq48zd2ze_d-8E9K9NT-yqxO7LQOs8Upejr8jLXf2OC6G66bfQHa4k38B0d-abw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>NAKAZATO, Ryosuke ; MATSUMOTO, Keeko ; YAMAGUCHI, Noboru ; CAVALLO, Margherita ; CROCELLÀ, Valentina ; BONINO, Francesca ; QUINTELIER, Matthias ; HADERMANN, Joke ; ROSERO-NAVARRO, Nataly Carolina ; MIURA, Akira ; TADANAGA, Kiyoharu</creator><creatorcontrib>NAKAZATO, Ryosuke ; MATSUMOTO, Keeko ; YAMAGUCHI, Noboru ; CAVALLO, Margherita ; CROCELLÀ, Valentina ; BONINO, Francesca ; QUINTELIER, Matthias ; HADERMANN, Joke ; ROSERO-NAVARRO, Nataly Carolina ; MIURA, Akira ; TADANAGA, Kiyoharu</creatorcontrib><description>Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.23-00080</identifier><language>eng</language><publisher>The Electrochemical Society of Japan</publisher><subject>CO Formation ; CO2 Electrochemical Reduction ; Gas-diffusion Electrode ; Layered Double Hydroxide</subject><ispartof>Electrochemistry, 2023/09/26, Vol.91(9), pp.097003-097003</ispartof><rights>The Author(s) 2023. Published by ECSJ.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-be8134dad2ffbbf92c41ab417552d3c595c52c4338e88aa87c200e07ffd2e10b3</citedby><cites>FETCH-LOGICAL-c465t-be8134dad2ffbbf92c41ab417552d3c595c52c4338e88aa87c200e07ffd2e10b3</cites><orcidid>0000-0002-6822-6685 ; 0000-0002-3606-8424 ; 0000-0002-1756-2566 ; 0000-0003-0388-9696 ; 0009-0008-8544-8053 ; 0000-0002-3319-4353 ; 0000-0001-6838-2875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>NAKAZATO, Ryosuke</creatorcontrib><creatorcontrib>MATSUMOTO, Keeko</creatorcontrib><creatorcontrib>YAMAGUCHI, Noboru</creatorcontrib><creatorcontrib>CAVALLO, Margherita</creatorcontrib><creatorcontrib>CROCELLÀ, Valentina</creatorcontrib><creatorcontrib>BONINO, Francesca</creatorcontrib><creatorcontrib>QUINTELIER, Matthias</creatorcontrib><creatorcontrib>HADERMANN, Joke</creatorcontrib><creatorcontrib>ROSERO-NAVARRO, Nataly Carolina</creatorcontrib><creatorcontrib>MIURA, Akira</creatorcontrib><creatorcontrib>TADANAGA, Kiyoharu</creatorcontrib><title>CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.</description><subject>CO Formation</subject><subject>CO2 Electrochemical Reduction</subject><subject>Gas-diffusion Electrode</subject><subject>Layered Double Hydroxide</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkNtqGzEQhkVJoSb1O2wfQImOu9JlcBI7YDCU9qY36qw0stdsrCKtaf32XccHSnMzgp_5vhE_IV84u9ONre-xRz_k5Df42pUhH-6EpIwxwz6QieCmpkJpfkMmXCpFpVbiE5mWsh1XOLO1FXZCfs5Wonr6x-Ohr75i2PuhS7vqdzdsqh87-tBXSzhgxlA9pn3bY7U4hJz-dAHpMkEY8zkU-tjFuC9H8KwM-Jl8jNAXnJ7fW_L9-enbbEGXq_nL7GFJvar1QFs04y8DBBFj20YrvOLQKt5oLYL02mqvx0xKg8YAmMYLxpA1MQaBnLXylrycvCHB1v3K3Svkg0vQubcg5bWDPHS-R8dqQMN0HWLgSktlgRnVRhGlRWabo8ueXD6nUjLGq48zd2ze_d-8E9K9NT-yqxO7LQOs8Upejr8jLXf2OC6G66bfQHa4k38B0d-abw</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>NAKAZATO, Ryosuke</creator><creator>MATSUMOTO, Keeko</creator><creator>YAMAGUCHI, Noboru</creator><creator>CAVALLO, Margherita</creator><creator>CROCELLÀ, Valentina</creator><creator>BONINO, Francesca</creator><creator>QUINTELIER, Matthias</creator><creator>HADERMANN, Joke</creator><creator>ROSERO-NAVARRO, Nataly Carolina</creator><creator>MIURA, Akira</creator><creator>TADANAGA, Kiyoharu</creator><general>The Electrochemical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6822-6685</orcidid><orcidid>https://orcid.org/0000-0002-3606-8424</orcidid><orcidid>https://orcid.org/0000-0002-1756-2566</orcidid><orcidid>https://orcid.org/0000-0003-0388-9696</orcidid><orcidid>https://orcid.org/0009-0008-8544-8053</orcidid><orcidid>https://orcid.org/0000-0002-3319-4353</orcidid><orcidid>https://orcid.org/0000-0001-6838-2875</orcidid></search><sort><creationdate>20230926</creationdate><title>CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode</title><author>NAKAZATO, Ryosuke ; MATSUMOTO, Keeko ; YAMAGUCHI, Noboru ; CAVALLO, Margherita ; CROCELLÀ, Valentina ; BONINO, Francesca ; QUINTELIER, Matthias ; HADERMANN, Joke ; ROSERO-NAVARRO, Nataly Carolina ; MIURA, Akira ; TADANAGA, Kiyoharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-be8134dad2ffbbf92c41ab417552d3c595c52c4338e88aa87c200e07ffd2e10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CO Formation</topic><topic>CO2 Electrochemical Reduction</topic><topic>Gas-diffusion Electrode</topic><topic>Layered Double Hydroxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NAKAZATO, Ryosuke</creatorcontrib><creatorcontrib>MATSUMOTO, Keeko</creatorcontrib><creatorcontrib>YAMAGUCHI, Noboru</creatorcontrib><creatorcontrib>CAVALLO, Margherita</creatorcontrib><creatorcontrib>CROCELLÀ, Valentina</creatorcontrib><creatorcontrib>BONINO, Francesca</creatorcontrib><creatorcontrib>QUINTELIER, Matthias</creatorcontrib><creatorcontrib>HADERMANN, Joke</creatorcontrib><creatorcontrib>ROSERO-NAVARRO, Nataly Carolina</creatorcontrib><creatorcontrib>MIURA, Akira</creatorcontrib><creatorcontrib>TADANAGA, Kiyoharu</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NAKAZATO, Ryosuke</au><au>MATSUMOTO, Keeko</au><au>YAMAGUCHI, Noboru</au><au>CAVALLO, Margherita</au><au>CROCELLÀ, Valentina</au><au>BONINO, Francesca</au><au>QUINTELIER, Matthias</au><au>HADERMANN, Joke</au><au>ROSERO-NAVARRO, Nataly Carolina</au><au>MIURA, Akira</au><au>TADANAGA, Kiyoharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2023-09-26</date><risdate>2023</risdate><volume>91</volume><issue>9</issue><spage>097003</spage><epage>097003</epage><pages>097003-097003</pages><artnum>23-00080</artnum><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.</abstract><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.23-00080</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6822-6685</orcidid><orcidid>https://orcid.org/0000-0002-3606-8424</orcidid><orcidid>https://orcid.org/0000-0002-1756-2566</orcidid><orcidid>https://orcid.org/0000-0003-0388-9696</orcidid><orcidid>https://orcid.org/0009-0008-8544-8053</orcidid><orcidid>https://orcid.org/0000-0002-3319-4353</orcidid><orcidid>https://orcid.org/0000-0001-6838-2875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-3542
ispartof Electrochemistry, 2023/09/26, Vol.91(9), pp.097003-097003
issn 1344-3542
2186-2451
language eng
recordid cdi_crossref_primary_10_5796_electrochemistry_23_00080
source J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects CO Formation
CO2 Electrochemical Reduction
Gas-diffusion Electrode
Layered Double Hydroxide
title CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Electrochemical%20Reduction%20with%20Zn-Al%20Layered%20Double%20Hydroxide-Loaded%20Gas-Diffusion%20Electrode&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=NAKAZATO,%20Ryosuke&rft.date=2023-09-26&rft.volume=91&rft.issue=9&rft.spage=097003&rft.epage=097003&rft.pages=097003-097003&rft.artnum=23-00080&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.23-00080&rft_dat=%3Cjstage_doaj_%3Earticle_electrochemistry_91_9_91_23_00080_article_char_en%3C/jstage_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_06ae8056dfd145349a084bf2f39e097b&rfr_iscdi=true