Automatic Building Extraction with Multi-sensor Data Using Rule-based Classification
This paper presents a new approach for automatic building extraction using a rule-based classification method with a multi-sensor system that includes light detection and ranging (LiDAR), a digital camera, and a GPS/IMU positioned on the same platform. The LiDAR data (elevation and intensity) and or...
Gespeichert in:
Veröffentlicht in: | European journal of remote sensing 2014-01, Vol.47 (1), p.1-18 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | European journal of remote sensing |
container_volume | 47 |
creator | Uzar, Melis |
description | This paper presents a new approach for automatic building extraction using a rule-based classification method with a multi-sensor system that includes light detection and ranging (LiDAR), a digital camera, and a GPS/IMU positioned on the same platform. The LiDAR data (elevation and intensity) and ortho-image are used to develop a rule set defined by parameter analyses during the segmentation and fuzzy classification processes to improve the building extraction results. The proposed approach was tested using the data derived from a multi-sensor system in Sivas, Turkey. Moreover, analyses of completeness (81.71%) and correctness (87.64%) were performed by automatic comparison of the extracted buildings and reference data. |
doi_str_mv | 10.5721/EuJRS20144701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5721_EuJRS20144701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200895243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-af6d898ba5edb19f9f9250e1a672524e817f58ce67ce5a35c8d147c0737ec97e3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EElXpyB6JOWA7ce2MpZQvFSGVdraujg2u0rjYjkr_PY7KABJ3w93wvO99IHRJ8DXjlNzMuufFG8WkLDkmJ2hAKa9yTll5-qs_R6MQNjiFwJiLaoCWky66LUSrstvONrVt37PZV_SgonVttrfxI3vpmmjzoNvgfHYHEbJV6LlF1-h8DUHX2bSBEKyxCnrZBToz0AQ9-qlDtLqfLaeP-fz14Wk6meeqYEXMwYxrUYk1MF2vSWVSUoY1gXHalZZaEG6YUHrMlWZQMCVqUnKFecG1qrguhujq6Lvz7rPTIcqN63ybRkpK041VcikSlR8p5V0IXhu583YL_iAJlv3v5J_fJV4cedsa57ewd76pZYRD47zx0CobZPG_9Bvgk3SV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200895243</pqid></control><display><type>article</type><title>Automatic Building Extraction with Multi-sensor Data Using Rule-based Classification</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Taylor & Francis (Open Access Collection)</source><creator>Uzar, Melis</creator><creatorcontrib>Uzar, Melis</creatorcontrib><description>This paper presents a new approach for automatic building extraction using a rule-based classification method with a multi-sensor system that includes light detection and ranging (LiDAR), a digital camera, and a GPS/IMU positioned on the same platform. The LiDAR data (elevation and intensity) and ortho-image are used to develop a rule set defined by parameter analyses during the segmentation and fuzzy classification processes to improve the building extraction results. The proposed approach was tested using the data derived from a multi-sensor system in Sivas, Turkey. Moreover, analyses of completeness (81.71%) and correctness (87.64%) were performed by automatic comparison of the extracted buildings and reference data.</description><identifier>ISSN: 2279-7254</identifier><identifier>EISSN: 2279-7254</identifier><identifier>DOI: 10.5721/EuJRS20144701</identifier><language>eng</language><publisher>Cagiari: Taylor & Francis</publisher><subject>building extraction ; Buildings ; Classification ; Digital cameras ; fuzzy logic ; Fuzzy sets ; Global positioning systems ; GPS ; Image segmentation ; intensity ; LiDAR ; rule-based classification ; Satellite navigation systems ; segmentation ; Sensors</subject><ispartof>European journal of remote sensing, 2014-01, Vol.47 (1), p.1-18</ispartof><rights>2014 The Author(s). Published by Taylor & Francis. 2014</rights><rights>2014 The Author(s). Published by Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-af6d898ba5edb19f9f9250e1a672524e817f58ce67ce5a35c8d147c0737ec97e3</citedby><cites>FETCH-LOGICAL-c353t-af6d898ba5edb19f9f9250e1a672524e817f58ce67ce5a35c8d147c0737ec97e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.5721/EuJRS20144701$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.5721/EuJRS20144701$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27506,27928,27929,59147,59148</link.rule.ids></links><search><creatorcontrib>Uzar, Melis</creatorcontrib><title>Automatic Building Extraction with Multi-sensor Data Using Rule-based Classification</title><title>European journal of remote sensing</title><description>This paper presents a new approach for automatic building extraction using a rule-based classification method with a multi-sensor system that includes light detection and ranging (LiDAR), a digital camera, and a GPS/IMU positioned on the same platform. The LiDAR data (elevation and intensity) and ortho-image are used to develop a rule set defined by parameter analyses during the segmentation and fuzzy classification processes to improve the building extraction results. The proposed approach was tested using the data derived from a multi-sensor system in Sivas, Turkey. Moreover, analyses of completeness (81.71%) and correctness (87.64%) were performed by automatic comparison of the extracted buildings and reference data.</description><subject>building extraction</subject><subject>Buildings</subject><subject>Classification</subject><subject>Digital cameras</subject><subject>fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Image segmentation</subject><subject>intensity</subject><subject>LiDAR</subject><subject>rule-based classification</subject><subject>Satellite navigation systems</subject><subject>segmentation</subject><subject>Sensors</subject><issn>2279-7254</issn><issn>2279-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EElXpyB6JOWA7ce2MpZQvFSGVdraujg2u0rjYjkr_PY7KABJ3w93wvO99IHRJ8DXjlNzMuufFG8WkLDkmJ2hAKa9yTll5-qs_R6MQNjiFwJiLaoCWky66LUSrstvONrVt37PZV_SgonVttrfxI3vpmmjzoNvgfHYHEbJV6LlF1-h8DUHX2bSBEKyxCnrZBToz0AQ9-qlDtLqfLaeP-fz14Wk6meeqYEXMwYxrUYk1MF2vSWVSUoY1gXHalZZaEG6YUHrMlWZQMCVqUnKFecG1qrguhujq6Lvz7rPTIcqN63ybRkpK041VcikSlR8p5V0IXhu583YL_iAJlv3v5J_fJV4cedsa57ewd76pZYRD47zx0CobZPG_9Bvgk3SV</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Uzar, Melis</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140101</creationdate><title>Automatic Building Extraction with Multi-sensor Data Using Rule-based Classification</title><author>Uzar, Melis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-af6d898ba5edb19f9f9250e1a672524e817f58ce67ce5a35c8d147c0737ec97e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>building extraction</topic><topic>Buildings</topic><topic>Classification</topic><topic>Digital cameras</topic><topic>fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Image segmentation</topic><topic>intensity</topic><topic>LiDAR</topic><topic>rule-based classification</topic><topic>Satellite navigation systems</topic><topic>segmentation</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uzar, Melis</creatorcontrib><collection>Access via Taylor & Francis (Open Access Collection)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uzar, Melis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Building Extraction with Multi-sensor Data Using Rule-based Classification</atitle><jtitle>European journal of remote sensing</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>47</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>2279-7254</issn><eissn>2279-7254</eissn><abstract>This paper presents a new approach for automatic building extraction using a rule-based classification method with a multi-sensor system that includes light detection and ranging (LiDAR), a digital camera, and a GPS/IMU positioned on the same platform. The LiDAR data (elevation and intensity) and ortho-image are used to develop a rule set defined by parameter analyses during the segmentation and fuzzy classification processes to improve the building extraction results. The proposed approach was tested using the data derived from a multi-sensor system in Sivas, Turkey. Moreover, analyses of completeness (81.71%) and correctness (87.64%) were performed by automatic comparison of the extracted buildings and reference data.</abstract><cop>Cagiari</cop><pub>Taylor & Francis</pub><doi>10.5721/EuJRS20144701</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2279-7254 |
ispartof | European journal of remote sensing, 2014-01, Vol.47 (1), p.1-18 |
issn | 2279-7254 2279-7254 |
language | eng |
recordid | cdi_crossref_primary_10_5721_EuJRS20144701 |
source | DOAJ Directory of Open Access Journals; Access via Taylor & Francis (Open Access Collection) |
subjects | building extraction Buildings Classification Digital cameras fuzzy logic Fuzzy sets Global positioning systems GPS Image segmentation intensity LiDAR rule-based classification Satellite navigation systems segmentation Sensors |
title | Automatic Building Extraction with Multi-sensor Data Using Rule-based Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Building%20Extraction%20with%20Multi-sensor%20Data%20Using%20Rule-based%20Classification&rft.jtitle=European%20journal%20of%20remote%20sensing&rft.au=Uzar,%20Melis&rft.date=2014-01-01&rft.volume=47&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=2279-7254&rft.eissn=2279-7254&rft_id=info:doi/10.5721/EuJRS20144701&rft_dat=%3Cproquest_cross%3E2200895243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200895243&rft_id=info:pmid/&rfr_iscdi=true |