Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series

Desertification is a challenge in north-eastern Brazil (NEB) that needs to be understood to develop sustainable land-use strategies. This study analyses regional vegetation dynamics in NEB and the compatibility of two NDVI data sets to support future desertification assessment studies in the semi-ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of remote sensing 2013-01, Vol.46 (1), p.40-59
Hauptverfasser: Schucknecht, Anne, Erasmi, Stefan, Niemeyer, Irmgard, Matschullat, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 40
container_title European journal of remote sensing
container_volume 46
creator Schucknecht, Anne
Erasmi, Stefan
Niemeyer, Irmgard
Matschullat, Jörg
description Desertification is a challenge in north-eastern Brazil (NEB) that needs to be understood to develop sustainable land-use strategies. This study analyses regional vegetation dynamics in NEB and the compatibility of two NDVI data sets to support future desertification assessment studies in the semi-arid Caatinga biome. Vegetation variability and trends in NEB are analysed for 1982-2006, based on monthly AVHRR (GIMMS) NDVI data. The GIMMS data are compared with MODIS NDVI for the overlapping period 2001-2006. Existing statistical methods are applied and existing NDVI analyses in NEB expanded in respect to vegetation trend analysis and data set comparison.
doi_str_mv 10.5721/EuJRS20134603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5721_EuJRS20134603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200895131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d1eafd681356430dd10b31cd9a65e6a48c568c4dab0a6352d6382595c6df5aff3</originalsourceid><addsrcrecordid>eNptkM1PAjEQxTdGEwl69N7E82o_tt3dIwIKBiUB5boZtl0sWVpsuxj8613BgybOZebwe-9lXhRdEXzDU0puh83jbE4xYYnA7CTqUJrmcUp5cvrrPo8uvV_jdjKM0yzvROue98p7bVZop1YqQNDWoB04DUtd67BHYCQKThnpkTbIWBfeYgU-KGfQnYNPXaPmoO8tRrPZAX-aDsZz9DxYjFHQG4W8clr5i-isgtqry5_djV7vhy_9UTyZPoz7vUlcMs5CLImCSoqMMC4ShqUkeMlIKXMQXAlIspKLrEwkLDEIxqkULKM856WQFYeqYt3o-ui7dfa9UT4Ua9s400YWlLaf55ww0lLxkSqd9d6pqtg6vQG3Lwguvhst_jTa8tmR16aybgMf1tWyCLCvrascmFL7gv0v_QLF3nuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200895131</pqid></control><display><type>article</type><title>Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Taylor &amp; Francis (Open Access Collection)</source><creator>Schucknecht, Anne ; Erasmi, Stefan ; Niemeyer, Irmgard ; Matschullat, Jörg</creator><creatorcontrib>Schucknecht, Anne ; Erasmi, Stefan ; Niemeyer, Irmgard ; Matschullat, Jörg</creatorcontrib><description>Desertification is a challenge in north-eastern Brazil (NEB) that needs to be understood to develop sustainable land-use strategies. This study analyses regional vegetation dynamics in NEB and the compatibility of two NDVI data sets to support future desertification assessment studies in the semi-arid Caatinga biome. Vegetation variability and trends in NEB are analysed for 1982-2006, based on monthly AVHRR (GIMMS) NDVI data. The GIMMS data are compared with MODIS NDVI for the overlapping period 2001-2006. Existing statistical methods are applied and existing NDVI analyses in NEB expanded in respect to vegetation trend analysis and data set comparison.</description><identifier>ISSN: 2279-7254</identifier><identifier>EISSN: 2279-7254</identifier><identifier>DOI: 10.5721/EuJRS20134603</identifier><language>eng</language><publisher>Cagiari: Taylor &amp; Francis</publisher><subject>Aridity ; Atlantic Forest ; BFAST ; Cerrado ; Datasets ; Desertification ; Land use ; MODIS ; Normalized Difference Vegetation Index ; precipitation ; Regional development ; Statistical methods ; time series decomposition ; Trend analysis ; Trends ; Vegetation</subject><ispartof>European journal of remote sensing, 2013-01, Vol.46 (1), p.40-59</ispartof><rights>2013 The Author(s). Published by Taylor &amp; Francis. 2013</rights><rights>2013 The Author(s). Published by Taylor &amp; Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d1eafd681356430dd10b31cd9a65e6a48c568c4dab0a6352d6382595c6df5aff3</citedby><cites>FETCH-LOGICAL-c353t-d1eafd681356430dd10b31cd9a65e6a48c568c4dab0a6352d6382595c6df5aff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.5721/EuJRS20134603$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.5721/EuJRS20134603$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Schucknecht, Anne</creatorcontrib><creatorcontrib>Erasmi, Stefan</creatorcontrib><creatorcontrib>Niemeyer, Irmgard</creatorcontrib><creatorcontrib>Matschullat, Jörg</creatorcontrib><title>Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series</title><title>European journal of remote sensing</title><description>Desertification is a challenge in north-eastern Brazil (NEB) that needs to be understood to develop sustainable land-use strategies. This study analyses regional vegetation dynamics in NEB and the compatibility of two NDVI data sets to support future desertification assessment studies in the semi-arid Caatinga biome. Vegetation variability and trends in NEB are analysed for 1982-2006, based on monthly AVHRR (GIMMS) NDVI data. The GIMMS data are compared with MODIS NDVI for the overlapping period 2001-2006. Existing statistical methods are applied and existing NDVI analyses in NEB expanded in respect to vegetation trend analysis and data set comparison.</description><subject>Aridity</subject><subject>Atlantic Forest</subject><subject>BFAST</subject><subject>Cerrado</subject><subject>Datasets</subject><subject>Desertification</subject><subject>Land use</subject><subject>MODIS</subject><subject>Normalized Difference Vegetation Index</subject><subject>precipitation</subject><subject>Regional development</subject><subject>Statistical methods</subject><subject>time series decomposition</subject><subject>Trend analysis</subject><subject>Trends</subject><subject>Vegetation</subject><issn>2279-7254</issn><issn>2279-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1PAjEQxTdGEwl69N7E82o_tt3dIwIKBiUB5boZtl0sWVpsuxj8613BgybOZebwe-9lXhRdEXzDU0puh83jbE4xYYnA7CTqUJrmcUp5cvrrPo8uvV_jdjKM0yzvROue98p7bVZop1YqQNDWoB04DUtd67BHYCQKThnpkTbIWBfeYgU-KGfQnYNPXaPmoO8tRrPZAX-aDsZz9DxYjFHQG4W8clr5i-isgtqry5_djV7vhy_9UTyZPoz7vUlcMs5CLImCSoqMMC4ShqUkeMlIKXMQXAlIspKLrEwkLDEIxqkULKM856WQFYeqYt3o-ui7dfa9UT4Ua9s400YWlLaf55ww0lLxkSqd9d6pqtg6vQG3Lwguvhst_jTa8tmR16aybgMf1tWyCLCvrascmFL7gv0v_QLF3nuI</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Schucknecht, Anne</creator><creator>Erasmi, Stefan</creator><creator>Niemeyer, Irmgard</creator><creator>Matschullat, Jörg</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20130101</creationdate><title>Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series</title><author>Schucknecht, Anne ; Erasmi, Stefan ; Niemeyer, Irmgard ; Matschullat, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d1eafd681356430dd10b31cd9a65e6a48c568c4dab0a6352d6382595c6df5aff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aridity</topic><topic>Atlantic Forest</topic><topic>BFAST</topic><topic>Cerrado</topic><topic>Datasets</topic><topic>Desertification</topic><topic>Land use</topic><topic>MODIS</topic><topic>Normalized Difference Vegetation Index</topic><topic>precipitation</topic><topic>Regional development</topic><topic>Statistical methods</topic><topic>time series decomposition</topic><topic>Trend analysis</topic><topic>Trends</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schucknecht, Anne</creatorcontrib><creatorcontrib>Erasmi, Stefan</creatorcontrib><creatorcontrib>Niemeyer, Irmgard</creatorcontrib><creatorcontrib>Matschullat, Jörg</creatorcontrib><collection>Access via Taylor &amp; Francis (Open Access Collection)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schucknecht, Anne</au><au>Erasmi, Stefan</au><au>Niemeyer, Irmgard</au><au>Matschullat, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series</atitle><jtitle>European journal of remote sensing</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>46</volume><issue>1</issue><spage>40</spage><epage>59</epage><pages>40-59</pages><issn>2279-7254</issn><eissn>2279-7254</eissn><abstract>Desertification is a challenge in north-eastern Brazil (NEB) that needs to be understood to develop sustainable land-use strategies. This study analyses regional vegetation dynamics in NEB and the compatibility of two NDVI data sets to support future desertification assessment studies in the semi-arid Caatinga biome. Vegetation variability and trends in NEB are analysed for 1982-2006, based on monthly AVHRR (GIMMS) NDVI data. The GIMMS data are compared with MODIS NDVI for the overlapping period 2001-2006. Existing statistical methods are applied and existing NDVI analyses in NEB expanded in respect to vegetation trend analysis and data set comparison.</abstract><cop>Cagiari</cop><pub>Taylor &amp; Francis</pub><doi>10.5721/EuJRS20134603</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2279-7254
ispartof European journal of remote sensing, 2013-01, Vol.46 (1), p.40-59
issn 2279-7254
2279-7254
language eng
recordid cdi_crossref_primary_10_5721_EuJRS20134603
source DOAJ Directory of Open Access Journals; Access via Taylor & Francis (Open Access Collection)
subjects Aridity
Atlantic Forest
BFAST
Cerrado
Datasets
Desertification
Land use
MODIS
Normalized Difference Vegetation Index
precipitation
Regional development
Statistical methods
time series decomposition
Trend analysis
Trends
Vegetation
title Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20vegetation%20variability%20and%20trends%20in%20north-eastern%20Brazil%20using%20AVHRR%20and%20MODIS%20NDVI%20time%20series&rft.jtitle=European%20journal%20of%20remote%20sensing&rft.au=Schucknecht,%20Anne&rft.date=2013-01-01&rft.volume=46&rft.issue=1&rft.spage=40&rft.epage=59&rft.pages=40-59&rft.issn=2279-7254&rft.eissn=2279-7254&rft_id=info:doi/10.5721/EuJRS20134603&rft_dat=%3Cproquest_cross%3E2200895131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200895131&rft_id=info:pmid/&rfr_iscdi=true