A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS

For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Sinica 2022-01, Vol.32, p.2297-2314
Hauptverfasser: Huang, Ming-Yueh, Hung, Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2314
container_issue
container_start_page 2297
container_title Statistica Sinica
container_volume 32
creator Huang, Ming-Yueh
Hung, Hung
description For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance.
doi_str_mv 10.5705/ss.202022.0169
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_202022_0169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27164192</jstor_id><sourcerecordid>27164192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-5adc83af5c646033a8cf56cb697913032a243f801888a30255163f6ea2736a213</originalsourceid><addsrcrecordid>eNo9UM9LwzAUDqLgmLt6E_IH2Ppe0qTJsbTZFpjdaLvtWLK6wkSZNLv435s6kXf4Ht-vw0fII0IsUhAv3scMwrEYUOobMkGtZaQEpLfhB0wjSEDck5n3pwOABoEK-ITsM1qZnTV7ui5pvbK5Kagtd6aqTRAWlalruy6fab2dz21uTdnQwr6acmSDodjmza-elQXNNptQkI1E_UDuevfhj7M_nJLt3DT5MlqtF8GzijqG8hIJ99Yp7nrRyUQC5051vZDdQepUIwfOHEt4rwCVUo4DEwIl7-XRsZRLx5BPSXzt7Yaz98Oxb7-G06cbvluEdlym9b69LtOOy4TA0zXw7i_n4d_NUpQJasZ_AO6qVvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Huang, Ming-Yueh ; Hung, Hung</creator><creatorcontrib>Huang, Ming-Yueh ; Hung, Hung</creatorcontrib><description>For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.202022.0169</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica</publisher><subject>IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS</subject><ispartof>Statistica Sinica, 2022-01, Vol.32, p.2297-2314</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27164192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27164192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Huang, Ming-Yueh</creatorcontrib><creatorcontrib>Hung, Hung</creatorcontrib><title>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</title><title>Statistica Sinica</title><description>For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance.</description><subject>IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UM9LwzAUDqLgmLt6E_IH2Ppe0qTJsbTZFpjdaLvtWLK6wkSZNLv435s6kXf4Ht-vw0fII0IsUhAv3scMwrEYUOobMkGtZaQEpLfhB0wjSEDck5n3pwOABoEK-ITsM1qZnTV7ui5pvbK5Kagtd6aqTRAWlalruy6fab2dz21uTdnQwr6acmSDodjmza-elQXNNptQkI1E_UDuevfhj7M_nJLt3DT5MlqtF8GzijqG8hIJ99Yp7nrRyUQC5051vZDdQepUIwfOHEt4rwCVUo4DEwIl7-XRsZRLx5BPSXzt7Yaz98Oxb7-G06cbvluEdlym9b69LtOOy4TA0zXw7i_n4d_NUpQJasZ_AO6qVvc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Huang, Ming-Yueh</creator><creator>Hung, Hung</creator><general>Institute of Statistical Science, Academia Sinica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</title><author>Huang, Ming-Yueh ; Hung, Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-5adc83af5c646033a8cf56cb697913032a243f801888a30255163f6ea2736a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ming-Yueh</creatorcontrib><creatorcontrib>Hung, Hung</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ming-Yueh</au><au>Hung, Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</atitle><jtitle>Statistica Sinica</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><spage>2297</spage><epage>2314</epage><pages>2297-2314</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance.</abstract><pub>Institute of Statistical Science, Academia Sinica</pub><doi>10.5705/ss.202022.0169</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2022-01, Vol.32, p.2297-2314
issn 1017-0405
1996-8507
language eng
recordid cdi_crossref_primary_10_5705_ss_202022_0169
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS
title A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20REVIEW%20ON%20SLICED%20INVERSE%20REGRESSION,%20SUFFICIENT%20DIMENSION%20REDUCTION,%20AND%20APPLICATIONS&rft.jtitle=Statistica%20Sinica&rft.au=Huang,%20Ming-Yueh&rft.date=2022-01-01&rft.volume=32&rft.spage=2297&rft.epage=2314&rft.pages=2297-2314&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.202022.0169&rft_dat=%3Cjstor_cross%3E27164192%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27164192&rfr_iscdi=true