A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS
For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimensi...
Gespeichert in:
Veröffentlicht in: | Statistica Sinica 2022-01, Vol.32, p.2297-2314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2314 |
---|---|
container_issue | |
container_start_page | 2297 |
container_title | Statistica Sinica |
container_volume | 32 |
creator | Huang, Ming-Yueh Hung, Hung |
description | For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance. |
doi_str_mv | 10.5705/ss.202022.0169 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_202022_0169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27164192</jstor_id><sourcerecordid>27164192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-5adc83af5c646033a8cf56cb697913032a243f801888a30255163f6ea2736a213</originalsourceid><addsrcrecordid>eNo9UM9LwzAUDqLgmLt6E_IH2Ppe0qTJsbTZFpjdaLvtWLK6wkSZNLv435s6kXf4Ht-vw0fII0IsUhAv3scMwrEYUOobMkGtZaQEpLfhB0wjSEDck5n3pwOABoEK-ITsM1qZnTV7ui5pvbK5Kagtd6aqTRAWlalruy6fab2dz21uTdnQwr6acmSDodjmza-elQXNNptQkI1E_UDuevfhj7M_nJLt3DT5MlqtF8GzijqG8hIJ99Yp7nrRyUQC5051vZDdQepUIwfOHEt4rwCVUo4DEwIl7-XRsZRLx5BPSXzt7Yaz98Oxb7-G06cbvluEdlym9b69LtOOy4TA0zXw7i_n4d_NUpQJasZ_AO6qVvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Huang, Ming-Yueh ; Hung, Hung</creator><creatorcontrib>Huang, Ming-Yueh ; Hung, Hung</creatorcontrib><description>For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.202022.0169</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica</publisher><subject>IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS</subject><ispartof>Statistica Sinica, 2022-01, Vol.32, p.2297-2314</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27164192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27164192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Huang, Ming-Yueh</creatorcontrib><creatorcontrib>Hung, Hung</creatorcontrib><title>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</title><title>Statistica Sinica</title><description>For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance.</description><subject>IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UM9LwzAUDqLgmLt6E_IH2Ppe0qTJsbTZFpjdaLvtWLK6wkSZNLv435s6kXf4Ht-vw0fII0IsUhAv3scMwrEYUOobMkGtZaQEpLfhB0wjSEDck5n3pwOABoEK-ITsM1qZnTV7ui5pvbK5Kagtd6aqTRAWlalruy6fab2dz21uTdnQwr6acmSDodjmza-elQXNNptQkI1E_UDuevfhj7M_nJLt3DT5MlqtF8GzijqG8hIJ99Yp7nrRyUQC5051vZDdQepUIwfOHEt4rwCVUo4DEwIl7-XRsZRLx5BPSXzt7Yaz98Oxb7-G06cbvluEdlym9b69LtOOy4TA0zXw7i_n4d_NUpQJasZ_AO6qVvc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Huang, Ming-Yueh</creator><creator>Hung, Hung</creator><general>Institute of Statistical Science, Academia Sinica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</title><author>Huang, Ming-Yueh ; Hung, Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-5adc83af5c646033a8cf56cb697913032a243f801888a30255163f6ea2736a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ming-Yueh</creatorcontrib><creatorcontrib>Hung, Hung</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ming-Yueh</au><au>Hung, Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS</atitle><jtitle>Statistica Sinica</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><spage>2297</spage><epage>2314</epage><pages>2297-2314</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>For effective dimension reduction (e.d.r.) in regression, the sliced inverse regression (SIR) is used to detect detailed structures of conditional distributions and reduce the dimensionality of covariates in a nonparametric manner. Subsequent analysis can then be based on features of a lower dimension, which assists with model interpretation and increases the estimation effciency. The concept of e.d.r. has led to the framework of sufficient dimension reduction (SDR), with promising developments in various fields. Here, we first review the SIR and other estimation methods for SDR when a complete random sample with finite-dimensional covariates is available. Then, we discuss extensions and applications to cases with more complicated structures, including high-dimensional data and two types of incomplete data. Lastly, we emphasize the importance of SDR in modern statistical applications, and explain how conventional SDR methods need to adapt to different data structures in order to ensure good performance.</abstract><pub>Institute of Statistical Science, Academia Sinica</pub><doi>10.5705/ss.202022.0169</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-0405 |
ispartof | Statistica Sinica, 2022-01, Vol.32, p.2297-2314 |
issn | 1017-0405 1996-8507 |
language | eng |
recordid | cdi_crossref_primary_10_5705_ss_202022_0169 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics |
subjects | IN HONOR OF PROFESSOR KER-CHAU LI: SLICED INVERSE REGRESSION AFTER 30 YEARS |
title | A REVIEW ON SLICED INVERSE REGRESSION, SUFFICIENT DIMENSION REDUCTION, AND APPLICATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20REVIEW%20ON%20SLICED%20INVERSE%20REGRESSION,%20SUFFICIENT%20DIMENSION%20REDUCTION,%20AND%20APPLICATIONS&rft.jtitle=Statistica%20Sinica&rft.au=Huang,%20Ming-Yueh&rft.date=2022-01-01&rft.volume=32&rft.spage=2297&rft.epage=2314&rft.pages=2297-2314&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.202022.0169&rft_dat=%3Cjstor_cross%3E27164192%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27164192&rfr_iscdi=true |