EMPIRICAL LIKELIHOOD ESTIMATION USING AUXILIARY SUMMARY INFORMATION WITH DIFFERENT COVARIATE DISTRIBUTIONS

The potential use of auxiliary summary information to improve the efficiency of estimation has attracted significant interest. Most existing methods assume that the data distribution is the same for the sample data and for the population that generates the auxiliary information. However, recent work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Sinica 2019, Vol.29 (3), p.1321-1342
Hauptverfasser: Han, Peisong, Lawless, Jerald F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1342
container_issue 3
container_start_page 1321
container_title Statistica Sinica
container_volume 29
creator Han, Peisong
Lawless, Jerald F.
description The potential use of auxiliary summary information to improve the efficiency of estimation has attracted significant interest. Most existing methods assume that the data distribution is the same for the sample data and for the population that generates the auxiliary information. However, recent works have relaxed this assumption by allowing heterogeneity between the two covariate distributions. We consider an empirical likelihood approach that guarantees that using auxiliary information will increase the effciency of estimation when the variability associated with this information is sufficiently small. We also investigate the effects of this variability on the efficiency. Furthermore, we implement the proposed approach using a Newton–Raphson-type algorithm. Lastly, we discuss our simulation results, which demonstrate the efficiency gains and confirm the large sample approximations.
doi_str_mv 10.5705/ss.202017.0308
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_202017_0308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26706004</jstor_id><sourcerecordid>26706004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-88ac045c6886c1c86cc2bf6712acb777666e36cde0f9decbb6f284a65975ec113</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpoSHNtbeC_oDdlWw9fHQTORH1o9hyHydjKzYktKRYufTf1yall51lmFmWD6F7Aj4TwB6d8ylQIMKHAOQVWpAo4p5kIK6nffI9CIHdopVzhw4gAkYkBAt0VNmLLvU6TnGqn1Wqd0WxwaoyOouNLnJcVzrf4rh-16mOyw9c1Vk2q86TovzLvGmzwxudJKpUucHr4jUudWzU5FWm1E_1nKru0M3Qfrp-9adLVCfKrHdeWmznBzxLOTl7UrYWQma5lNwSOw1Lu4ELQlvbCSE4533A7b6HIdr3tuv4QGXYchYJ1ltCgiXyL3fteHJu7Ifmezx8teNPQ6CZYTXONRdYzQxrKjxcCkd3Po3_acoFcIAw-AUgjF66</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EMPIRICAL LIKELIHOOD ESTIMATION USING AUXILIARY SUMMARY INFORMATION WITH DIFFERENT COVARIATE DISTRIBUTIONS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Han, Peisong ; Lawless, Jerald F.</creator><creatorcontrib>Han, Peisong ; Lawless, Jerald F.</creatorcontrib><description>The potential use of auxiliary summary information to improve the efficiency of estimation has attracted significant interest. Most existing methods assume that the data distribution is the same for the sample data and for the population that generates the auxiliary information. However, recent works have relaxed this assumption by allowing heterogeneity between the two covariate distributions. We consider an empirical likelihood approach that guarantees that using auxiliary information will increase the effciency of estimation when the variability associated with this information is sufficiently small. We also investigate the effects of this variability on the efficiency. Furthermore, we implement the proposed approach using a Newton–Raphson-type algorithm. Lastly, we discuss our simulation results, which demonstrate the efficiency gains and confirm the large sample approximations.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.202017.0308</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica</publisher><ispartof>Statistica Sinica, 2019, Vol.29 (3), p.1321-1342</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-88ac045c6886c1c86cc2bf6712acb777666e36cde0f9decbb6f284a65975ec113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26706004$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26706004$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Han, Peisong</creatorcontrib><creatorcontrib>Lawless, Jerald F.</creatorcontrib><title>EMPIRICAL LIKELIHOOD ESTIMATION USING AUXILIARY SUMMARY INFORMATION WITH DIFFERENT COVARIATE DISTRIBUTIONS</title><title>Statistica Sinica</title><description>The potential use of auxiliary summary information to improve the efficiency of estimation has attracted significant interest. Most existing methods assume that the data distribution is the same for the sample data and for the population that generates the auxiliary information. However, recent works have relaxed this assumption by allowing heterogeneity between the two covariate distributions. We consider an empirical likelihood approach that guarantees that using auxiliary information will increase the effciency of estimation when the variability associated with this information is sufficiently small. We also investigate the effects of this variability on the efficiency. Furthermore, we implement the proposed approach using a Newton–Raphson-type algorithm. Lastly, we discuss our simulation results, which demonstrate the efficiency gains and confirm the large sample approximations.</description><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpoSHNtbeC_oDdlWw9fHQTORH1o9hyHydjKzYktKRYufTf1yall51lmFmWD6F7Aj4TwB6d8ylQIMKHAOQVWpAo4p5kIK6nffI9CIHdopVzhw4gAkYkBAt0VNmLLvU6TnGqn1Wqd0WxwaoyOouNLnJcVzrf4rh-16mOyw9c1Vk2q86TovzLvGmzwxudJKpUucHr4jUudWzU5FWm1E_1nKru0M3Qfrp-9adLVCfKrHdeWmznBzxLOTl7UrYWQma5lNwSOw1Lu4ELQlvbCSE4533A7b6HIdr3tuv4QGXYchYJ1ltCgiXyL3fteHJu7Ifmezx8teNPQ6CZYTXONRdYzQxrKjxcCkd3Po3_acoFcIAw-AUgjF66</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Han, Peisong</creator><creator>Lawless, Jerald F.</creator><general>Institute of Statistical Science, Academia Sinica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>EMPIRICAL LIKELIHOOD ESTIMATION USING AUXILIARY SUMMARY INFORMATION WITH DIFFERENT COVARIATE DISTRIBUTIONS</title><author>Han, Peisong ; Lawless, Jerald F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-88ac045c6886c1c86cc2bf6712acb777666e36cde0f9decbb6f284a65975ec113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Peisong</creatorcontrib><creatorcontrib>Lawless, Jerald F.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Peisong</au><au>Lawless, Jerald F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EMPIRICAL LIKELIHOOD ESTIMATION USING AUXILIARY SUMMARY INFORMATION WITH DIFFERENT COVARIATE DISTRIBUTIONS</atitle><jtitle>Statistica Sinica</jtitle><date>2019</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>1321</spage><epage>1342</epage><pages>1321-1342</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>The potential use of auxiliary summary information to improve the efficiency of estimation has attracted significant interest. Most existing methods assume that the data distribution is the same for the sample data and for the population that generates the auxiliary information. However, recent works have relaxed this assumption by allowing heterogeneity between the two covariate distributions. We consider an empirical likelihood approach that guarantees that using auxiliary information will increase the effciency of estimation when the variability associated with this information is sufficiently small. We also investigate the effects of this variability on the efficiency. Furthermore, we implement the proposed approach using a Newton–Raphson-type algorithm. Lastly, we discuss our simulation results, which demonstrate the efficiency gains and confirm the large sample approximations.</abstract><pub>Institute of Statistical Science, Academia Sinica</pub><doi>10.5705/ss.202017.0308</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2019, Vol.29 (3), p.1321-1342
issn 1017-0405
1996-8507
language eng
recordid cdi_crossref_primary_10_5705_ss_202017_0308
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics
title EMPIRICAL LIKELIHOOD ESTIMATION USING AUXILIARY SUMMARY INFORMATION WITH DIFFERENT COVARIATE DISTRIBUTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EMPIRICAL%20LIKELIHOOD%20ESTIMATION%20USING%20AUXILIARY%20SUMMARY%20INFORMATION%20WITH%20DIFFERENT%20COVARIATE%20DISTRIBUTIONS&rft.jtitle=Statistica%20Sinica&rft.au=Han,%20Peisong&rft.date=2019&rft.volume=29&rft.issue=3&rft.spage=1321&rft.epage=1342&rft.pages=1321-1342&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.202017.0308&rft_dat=%3Cjstor_cross%3E26706004%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26706004&rfr_iscdi=true