AN ADAPTIVE-TO-MODEL TEST FOR PARAMETRIC SINGLE-INDEX ERRORS-IN-VARIABLES MODELS

This study provides a useful test for parametric single-index regression models when covariates are measured with errors and validation data are available. The proposed test is asymptotically unbiased, and its consistency rate does not depend on the dimension of the covariate vector. The proposed te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Sinica 2019, Vol.29 (3), p.1511-1534
Hauptverfasser: Koul, Hira L., Xie, Chuanlong, Zhu, Lixing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1534
container_issue 3
container_start_page 1511
container_title Statistica Sinica
container_volume 29
creator Koul, Hira L.
Xie, Chuanlong
Zhu, Lixing
description This study provides a useful test for parametric single-index regression models when covariates are measured with errors and validation data are available. The proposed test is asymptotically unbiased, and its consistency rate does not depend on the dimension of the covariate vector. The proposed test behaves like a classical local smoothing test with only one covariate, and retains the omnibus property against general alternatives. This suggests that the proposed test can potentially alleviate the difficulty associated with the curse of dimensionality in this field. Furthermore, a systematic study is conducted to investigate the effect of the ratio between the sample size and the size of the validation data on the asymptotic behavior of these tests. Lastly, simulations are conducted to examine the performance in several finite sample scenarios.
doi_str_mv 10.5705/ss.202017.0248
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_202017_0248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26706012</jstor_id><sourcerecordid>26706012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-71d62fa6f85195e24736d4cd5f206878d1a611ff72717a0abba97ce9beb7a34d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXplh2Sf8BhxontZGlaUyKlTeWEil3kPCwVgYribvh7UopYzZ3RnLs4hNwjREKBeAwh4sABVQQ8Sa_IDLNMslSAup7ydGeQgLglixAOLUAGAlOIZ2Snt1Sv9K7O94bVJduUK1PQ2lQ1fS4t3WmrN6a2-ZJW-XZdGJZvV-aNGmtLW00L22ub66fCVPQXre7IjXcfYVj8zTl5fTb18oUV5Tpf6oJ1HOWJKewl9076VGAmBp6oWPZJ1wvPQaYq7dFJRO8VV6gcuLZ1meqGrB1a5eKkj-ckuvR24zGEcfDN13j4dON3g9CclTQhNBclzVnJBDxcgPdwOo7_31wqkIA8_gEGc1Zl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN ADAPTIVE-TO-MODEL TEST FOR PARAMETRIC SINGLE-INDEX ERRORS-IN-VARIABLES MODELS</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Koul, Hira L. ; Xie, Chuanlong ; Zhu, Lixing</creator><creatorcontrib>Koul, Hira L. ; Xie, Chuanlong ; Zhu, Lixing</creatorcontrib><description>This study provides a useful test for parametric single-index regression models when covariates are measured with errors and validation data are available. The proposed test is asymptotically unbiased, and its consistency rate does not depend on the dimension of the covariate vector. The proposed test behaves like a classical local smoothing test with only one covariate, and retains the omnibus property against general alternatives. This suggests that the proposed test can potentially alleviate the difficulty associated with the curse of dimensionality in this field. Furthermore, a systematic study is conducted to investigate the effect of the ratio between the sample size and the size of the validation data on the asymptotic behavior of these tests. Lastly, simulations are conducted to examine the performance in several finite sample scenarios.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.202017.0248</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica</publisher><ispartof>Statistica Sinica, 2019, Vol.29 (3), p.1511-1534</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26706012$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26706012$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Koul, Hira L.</creatorcontrib><creatorcontrib>Xie, Chuanlong</creatorcontrib><creatorcontrib>Zhu, Lixing</creatorcontrib><title>AN ADAPTIVE-TO-MODEL TEST FOR PARAMETRIC SINGLE-INDEX ERRORS-IN-VARIABLES MODELS</title><title>Statistica Sinica</title><description>This study provides a useful test for parametric single-index regression models when covariates are measured with errors and validation data are available. The proposed test is asymptotically unbiased, and its consistency rate does not depend on the dimension of the covariate vector. The proposed test behaves like a classical local smoothing test with only one covariate, and retains the omnibus property against general alternatives. This suggests that the proposed test can potentially alleviate the difficulty associated with the curse of dimensionality in this field. Furthermore, a systematic study is conducted to investigate the effect of the ratio between the sample size and the size of the validation data on the asymptotic behavior of these tests. Lastly, simulations are conducted to examine the performance in several finite sample scenarios.</description><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EElXplh2Sf8BhxontZGlaUyKlTeWEil3kPCwVgYribvh7UopYzZ3RnLs4hNwjREKBeAwh4sABVQQ8Sa_IDLNMslSAup7ydGeQgLglixAOLUAGAlOIZ2Snt1Sv9K7O94bVJduUK1PQ2lQ1fS4t3WmrN6a2-ZJW-XZdGJZvV-aNGmtLW00L22ub66fCVPQXre7IjXcfYVj8zTl5fTb18oUV5Tpf6oJ1HOWJKewl9076VGAmBp6oWPZJ1wvPQaYq7dFJRO8VV6gcuLZ1meqGrB1a5eKkj-ckuvR24zGEcfDN13j4dON3g9CclTQhNBclzVnJBDxcgPdwOo7_31wqkIA8_gEGc1Zl</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Koul, Hira L.</creator><creator>Xie, Chuanlong</creator><creator>Zhu, Lixing</creator><general>Institute of Statistical Science, Academia Sinica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>AN ADAPTIVE-TO-MODEL TEST FOR PARAMETRIC SINGLE-INDEX ERRORS-IN-VARIABLES MODELS</title><author>Koul, Hira L. ; Xie, Chuanlong ; Zhu, Lixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-71d62fa6f85195e24736d4cd5f206878d1a611ff72717a0abba97ce9beb7a34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koul, Hira L.</creatorcontrib><creatorcontrib>Xie, Chuanlong</creatorcontrib><creatorcontrib>Zhu, Lixing</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koul, Hira L.</au><au>Xie, Chuanlong</au><au>Zhu, Lixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ADAPTIVE-TO-MODEL TEST FOR PARAMETRIC SINGLE-INDEX ERRORS-IN-VARIABLES MODELS</atitle><jtitle>Statistica Sinica</jtitle><date>2019</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>1511</spage><epage>1534</epage><pages>1511-1534</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>This study provides a useful test for parametric single-index regression models when covariates are measured with errors and validation data are available. The proposed test is asymptotically unbiased, and its consistency rate does not depend on the dimension of the covariate vector. The proposed test behaves like a classical local smoothing test with only one covariate, and retains the omnibus property against general alternatives. This suggests that the proposed test can potentially alleviate the difficulty associated with the curse of dimensionality in this field. Furthermore, a systematic study is conducted to investigate the effect of the ratio between the sample size and the size of the validation data on the asymptotic behavior of these tests. Lastly, simulations are conducted to examine the performance in several finite sample scenarios.</abstract><pub>Institute of Statistical Science, Academia Sinica</pub><doi>10.5705/ss.202017.0248</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2019, Vol.29 (3), p.1511-1534
issn 1017-0405
1996-8507
language eng
recordid cdi_crossref_primary_10_5705_ss_202017_0248
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
title AN ADAPTIVE-TO-MODEL TEST FOR PARAMETRIC SINGLE-INDEX ERRORS-IN-VARIABLES MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ADAPTIVE-TO-MODEL%20TEST%20FOR%20PARAMETRIC%20SINGLE-INDEX%20ERRORS-IN-VARIABLES%20MODELS&rft.jtitle=Statistica%20Sinica&rft.au=Koul,%20Hira%20L.&rft.date=2019&rft.volume=29&rft.issue=3&rft.spage=1511&rft.epage=1534&rft.pages=1511-1534&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.202017.0248&rft_dat=%3Cjstor_cross%3E26706012%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26706012&rfr_iscdi=true