CALIBRATION AND MULTIPLE ROBUSTNESS WHEN DATA ARE MISSING NOT AT RANDOM

In missing data analysis, multiple robustness is a desirable property resulting from the calibration technique. A multiply robust estimator is consistent if any one of the multiple data distribution models and missingness mechanism models is correctly specified. So far in the literature, multiple ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Sinica 2018-10, Vol.28 (4), p.1725-1740
1. Verfasser: Han, Peisong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1740
container_issue 4
container_start_page 1725
container_title Statistica Sinica
container_volume 28
creator Han, Peisong
description In missing data analysis, multiple robustness is a desirable property resulting from the calibration technique. A multiply robust estimator is consistent if any one of the multiple data distribution models and missingness mechanism models is correctly specified. So far in the literature, multiple robustness has only been established when data are missing at random (MAR). We study how to carry out calibration to construct a multiply robust estimator when data are missing not at random (MNAR). With multiple models available, where each model consists of two components, one for data distribution for complete cases and one for missingness mechanism, our proposed estimator is consistent if any one pair of models are correctly specified.
doi_str_mv 10.5705/ss.202015.0408
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_202015_0408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26511186</jstor_id><sourcerecordid>26511186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-6cbfbd5929487f51699833da769cc0f8b9857048250817820d2e7f1119e17f6c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNRevQn7BxJnNt2v47aNbSBNJNngMSRpFipKJduL_94tLZ5mGOZ5h3kIeUaIuQT-6n3MgAHyGJag7sgMtRaR4iDvQw8oozDnj2Th_bEH0MBRQTIj27XJs1VlbFYW1BQbum9ym73nKa3KVVPbIq1r-rFLC7ox1lBTpXSf1XVWbGlRWmosrQJV7p_Ig-u-_Li41Tlp3lK73kV5uc3CjWhgAs-RGHrXH7hmeqmk4yi0Vkly6KTQwwBO9VqFd5aKcVAoFYMDG6VDRD2idGJI5iS-5g7TyftpdO3PdPzupt8Wob2YaL1vrybai4kAvFyBT38-Tf_bTPCQqkTyB5ueUqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CALIBRATION AND MULTIPLE ROBUSTNESS WHEN DATA ARE MISSING NOT AT RANDOM</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Han, Peisong</creator><creatorcontrib>Han, Peisong</creatorcontrib><description>In missing data analysis, multiple robustness is a desirable property resulting from the calibration technique. A multiply robust estimator is consistent if any one of the multiple data distribution models and missingness mechanism models is correctly specified. So far in the literature, multiple robustness has only been established when data are missing at random (MAR). We study how to carry out calibration to construct a multiply robust estimator when data are missing not at random (MNAR). With multiple models available, where each model consists of two components, one for data distribution for complete cases and one for missingness mechanism, our proposed estimator is consistent if any one pair of models are correctly specified.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.202015.0408</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><ispartof>Statistica Sinica, 2018-10, Vol.28 (4), p.1725-1740</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-6cbfbd5929487f51699833da769cc0f8b9857048250817820d2e7f1119e17f6c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26511186$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26511186$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Han, Peisong</creatorcontrib><title>CALIBRATION AND MULTIPLE ROBUSTNESS WHEN DATA ARE MISSING NOT AT RANDOM</title><title>Statistica Sinica</title><description>In missing data analysis, multiple robustness is a desirable property resulting from the calibration technique. A multiply robust estimator is consistent if any one of the multiple data distribution models and missingness mechanism models is correctly specified. So far in the literature, multiple robustness has only been established when data are missing at random (MAR). We study how to carry out calibration to construct a multiply robust estimator when data are missing not at random (MNAR). With multiple models available, where each model consists of two components, one for data distribution for complete cases and one for missingness mechanism, our proposed estimator is consistent if any one pair of models are correctly specified.</description><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNRevQn7BxJnNt2v47aNbSBNJNngMSRpFipKJduL_94tLZ5mGOZ5h3kIeUaIuQT-6n3MgAHyGJag7sgMtRaR4iDvQw8oozDnj2Th_bEH0MBRQTIj27XJs1VlbFYW1BQbum9ym73nKa3KVVPbIq1r-rFLC7ox1lBTpXSf1XVWbGlRWmosrQJV7p_Ig-u-_Li41Tlp3lK73kV5uc3CjWhgAs-RGHrXH7hmeqmk4yi0Vkly6KTQwwBO9VqFd5aKcVAoFYMDG6VDRD2idGJI5iS-5g7TyftpdO3PdPzupt8Wob2YaL1vrybai4kAvFyBT38-Tf_bTPCQqkTyB5ueUqU</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Han, Peisong</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>CALIBRATION AND MULTIPLE ROBUSTNESS WHEN DATA ARE MISSING NOT AT RANDOM</title><author>Han, Peisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-6cbfbd5929487f51699833da769cc0f8b9857048250817820d2e7f1119e17f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Peisong</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Peisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CALIBRATION AND MULTIPLE ROBUSTNESS WHEN DATA ARE MISSING NOT AT RANDOM</atitle><jtitle>Statistica Sinica</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>1725</spage><epage>1740</epage><pages>1725-1740</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>In missing data analysis, multiple robustness is a desirable property resulting from the calibration technique. A multiply robust estimator is consistent if any one of the multiple data distribution models and missingness mechanism models is correctly specified. So far in the literature, multiple robustness has only been established when data are missing at random (MAR). We study how to carry out calibration to construct a multiply robust estimator when data are missing not at random (MNAR). With multiple models available, where each model consists of two components, one for data distribution for complete cases and one for missingness mechanism, our proposed estimator is consistent if any one pair of models are correctly specified.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><doi>10.5705/ss.202015.0408</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2018-10, Vol.28 (4), p.1725-1740
issn 1017-0405
1996-8507
language eng
recordid cdi_crossref_primary_10_5705_ss_202015_0408
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics
title CALIBRATION AND MULTIPLE ROBUSTNESS WHEN DATA ARE MISSING NOT AT RANDOM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CALIBRATION%20AND%20MULTIPLE%20ROBUSTNESS%20WHEN%20DATA%20ARE%20MISSING%20NOT%20AT%20RANDOM&rft.jtitle=Statistica%20Sinica&rft.au=Han,%20Peisong&rft.date=2018-10-01&rft.volume=28&rft.issue=4&rft.spage=1725&rft.epage=1740&rft.pages=1725-1740&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.202015.0408&rft_dat=%3Cjstor_cross%3E26511186%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26511186&rfr_iscdi=true