OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION
We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the mode...
Gespeichert in:
Veröffentlicht in: | Statistica Sinica 2011-10, Vol.21 (4), p.1557-1570 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1570 |
---|---|
container_issue | 4 |
container_start_page | 1557 |
container_title | Statistica Sinica |
container_volume | 21 |
creator | Dette, Holger Melas, Viatcheslav B. Shpilev, Petr |
description | We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models. |
doi_str_mv | 10.5705/ss.2009.202 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_2009_202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24309645</jstor_id><sourcerecordid>24309645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-d7796851a334bedee652fe47457f06a9d1bd89e1dbc53635c01f92bdc54602ad3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOOZOnoXcpfrmuzmOmXWBmkpbdy1tk8JEmTS7-N-bMfHyPO_Hj-fwIHRP4EkoEM8xPlEAnYReoQXRWma5AHWdZiAqAw7iFq1iPAyJAkFyYAtkqrfWvq5L_GIaW7gGb6sam-Z8a60rcLsz6VXbfVr3BluHXeVK68y6xrUpatM0tnJ36GbqP2NY_fkSvW9Nu9llZVXYzbrMRirEKfNKaZkL0jPGh-BDkIJOgSsu1ASy154MPteB-GEUTDIxApk0HfwouATae7ZEj5fccT7GOIep-54PX_380xHoziV0MXbnEpLQRD9c6I94Os7_KOUMtOSC_QICYFJv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dette, Holger ; Melas, Viatcheslav B. ; Shpilev, Petr</creator><creatorcontrib>Dette, Holger ; Melas, Viatcheslav B. ; Shpilev, Petr</creatorcontrib><description>We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.2009.202</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Design efficiency ; Experiment design ; Linear regression ; Mathematical independent variables ; Mathematical vectors ; Mathematics ; Musical intervals ; Parametric models ; Point estimators ; Regression analysis</subject><ispartof>Statistica Sinica, 2011-10, Vol.21 (4), p.1557-1570</ispartof><rights>2011 STATISTICA SINICA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-d7796851a334bedee652fe47457f06a9d1bd89e1dbc53635c01f92bdc54602ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24309645$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24309645$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Melas, Viatcheslav B.</creatorcontrib><creatorcontrib>Shpilev, Petr</creatorcontrib><title>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</title><title>Statistica Sinica</title><description>We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models.</description><subject>Design efficiency</subject><subject>Experiment design</subject><subject>Linear regression</subject><subject>Mathematical independent variables</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Musical intervals</subject><subject>Parametric models</subject><subject>Point estimators</subject><subject>Regression analysis</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYxoMoOOZOnoXcpfrmuzmOmXWBmkpbdy1tk8JEmTS7-N-bMfHyPO_Hj-fwIHRP4EkoEM8xPlEAnYReoQXRWma5AHWdZiAqAw7iFq1iPAyJAkFyYAtkqrfWvq5L_GIaW7gGb6sam-Z8a60rcLsz6VXbfVr3BluHXeVK68y6xrUpatM0tnJ36GbqP2NY_fkSvW9Nu9llZVXYzbrMRirEKfNKaZkL0jPGh-BDkIJOgSsu1ASy154MPteB-GEUTDIxApk0HfwouATae7ZEj5fccT7GOIep-54PX_380xHoziV0MXbnEpLQRD9c6I94Os7_KOUMtOSC_QICYFJv</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Dette, Holger</creator><creator>Melas, Viatcheslav B.</creator><creator>Shpilev, Petr</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111001</creationdate><title>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</title><author>Dette, Holger ; Melas, Viatcheslav B. ; Shpilev, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-d7796851a334bedee652fe47457f06a9d1bd89e1dbc53635c01f92bdc54602ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Design efficiency</topic><topic>Experiment design</topic><topic>Linear regression</topic><topic>Mathematical independent variables</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Musical intervals</topic><topic>Parametric models</topic><topic>Point estimators</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Melas, Viatcheslav B.</creatorcontrib><creatorcontrib>Shpilev, Petr</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dette, Holger</au><au>Melas, Viatcheslav B.</au><au>Shpilev, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</atitle><jtitle>Statistica Sinica</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>1557</spage><epage>1570</epage><pages>1557-1570</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><doi>10.5705/ss.2009.202</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-0405 |
ispartof | Statistica Sinica, 2011-10, Vol.21 (4), p.1557-1570 |
issn | 1017-0405 1996-8507 |
language | eng |
recordid | cdi_crossref_primary_10_5705_ss_2009_202 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | Design efficiency Experiment design Linear regression Mathematical independent variables Mathematical vectors Mathematics Musical intervals Parametric models Point estimators Regression analysis |
title | OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20DESIGNS%20FOR%20ESTIMATING%20THE%20DERIVATIVE%20IN%20NONLINEAR%20REGRESSION&rft.jtitle=Statistica%20Sinica&rft.au=Dette,%20Holger&rft.date=2011-10-01&rft.volume=21&rft.issue=4&rft.spage=1557&rft.epage=1570&rft.pages=1557-1570&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.2009.202&rft_dat=%3Cjstor_cross%3E24309645%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24309645&rfr_iscdi=true |