OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION

We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Sinica 2011-10, Vol.21 (4), p.1557-1570
Hauptverfasser: Dette, Holger, Melas, Viatcheslav B., Shpilev, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1570
container_issue 4
container_start_page 1557
container_title Statistica Sinica
container_volume 21
creator Dette, Holger
Melas, Viatcheslav B.
Shpilev, Petr
description We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models.
doi_str_mv 10.5705/ss.2009.202
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_2009_202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24309645</jstor_id><sourcerecordid>24309645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-d7796851a334bedee652fe47457f06a9d1bd89e1dbc53635c01f92bdc54602ad3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOOZOnoXcpfrmuzmOmXWBmkpbdy1tk8JEmTS7-N-bMfHyPO_Hj-fwIHRP4EkoEM8xPlEAnYReoQXRWma5AHWdZiAqAw7iFq1iPAyJAkFyYAtkqrfWvq5L_GIaW7gGb6sam-Z8a60rcLsz6VXbfVr3BluHXeVK68y6xrUpatM0tnJ36GbqP2NY_fkSvW9Nu9llZVXYzbrMRirEKfNKaZkL0jPGh-BDkIJOgSsu1ASy154MPteB-GEUTDIxApk0HfwouATae7ZEj5fccT7GOIep-54PX_380xHoziV0MXbnEpLQRD9c6I94Os7_KOUMtOSC_QICYFJv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dette, Holger ; Melas, Viatcheslav B. ; Shpilev, Petr</creator><creatorcontrib>Dette, Holger ; Melas, Viatcheslav B. ; Shpilev, Petr</creatorcontrib><description>We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.2009.202</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Design efficiency ; Experiment design ; Linear regression ; Mathematical independent variables ; Mathematical vectors ; Mathematics ; Musical intervals ; Parametric models ; Point estimators ; Regression analysis</subject><ispartof>Statistica Sinica, 2011-10, Vol.21 (4), p.1557-1570</ispartof><rights>2011 STATISTICA SINICA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-d7796851a334bedee652fe47457f06a9d1bd89e1dbc53635c01f92bdc54602ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24309645$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24309645$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Melas, Viatcheslav B.</creatorcontrib><creatorcontrib>Shpilev, Petr</creatorcontrib><title>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</title><title>Statistica Sinica</title><description>We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models.</description><subject>Design efficiency</subject><subject>Experiment design</subject><subject>Linear regression</subject><subject>Mathematical independent variables</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Musical intervals</subject><subject>Parametric models</subject><subject>Point estimators</subject><subject>Regression analysis</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYxoMoOOZOnoXcpfrmuzmOmXWBmkpbdy1tk8JEmTS7-N-bMfHyPO_Hj-fwIHRP4EkoEM8xPlEAnYReoQXRWma5AHWdZiAqAw7iFq1iPAyJAkFyYAtkqrfWvq5L_GIaW7gGb6sam-Z8a60rcLsz6VXbfVr3BluHXeVK68y6xrUpatM0tnJ36GbqP2NY_fkSvW9Nu9llZVXYzbrMRirEKfNKaZkL0jPGh-BDkIJOgSsu1ASy154MPteB-GEUTDIxApk0HfwouATae7ZEj5fccT7GOIep-54PX_380xHoziV0MXbnEpLQRD9c6I94Os7_KOUMtOSC_QICYFJv</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Dette, Holger</creator><creator>Melas, Viatcheslav B.</creator><creator>Shpilev, Petr</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111001</creationdate><title>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</title><author>Dette, Holger ; Melas, Viatcheslav B. ; Shpilev, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-d7796851a334bedee652fe47457f06a9d1bd89e1dbc53635c01f92bdc54602ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Design efficiency</topic><topic>Experiment design</topic><topic>Linear regression</topic><topic>Mathematical independent variables</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Musical intervals</topic><topic>Parametric models</topic><topic>Point estimators</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Melas, Viatcheslav B.</creatorcontrib><creatorcontrib>Shpilev, Petr</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dette, Holger</au><au>Melas, Viatcheslav B.</au><au>Shpilev, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION</atitle><jtitle>Statistica Sinica</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>1557</spage><epage>1570</epage><pages>1557-1570</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>We consider the problem of estimating the derivative of the expected response in nonlinear regression models. It is demonstrated that in many cases the optimal designs for estimating the derivative have either on m or m − 1 support points, where m denotes the number of unknown parameters in the model. It is also shown that the support points and weights of the optimal designs are analytic functions, and this result is used to construct a numerical procedure for the calculation of the optimal designs. The results are illustrated in exponential regression and rational regression models.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><doi>10.5705/ss.2009.202</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2011-10, Vol.21 (4), p.1557-1570
issn 1017-0405
1996-8507
language eng
recordid cdi_crossref_primary_10_5705_ss_2009_202
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Design efficiency
Experiment design
Linear regression
Mathematical independent variables
Mathematical vectors
Mathematics
Musical intervals
Parametric models
Point estimators
Regression analysis
title OPTIMAL DESIGNS FOR ESTIMATING THE DERIVATIVE IN NONLINEAR REGRESSION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20DESIGNS%20FOR%20ESTIMATING%20THE%20DERIVATIVE%20IN%20NONLINEAR%20REGRESSION&rft.jtitle=Statistica%20Sinica&rft.au=Dette,%20Holger&rft.date=2011-10-01&rft.volume=21&rft.issue=4&rft.spage=1557&rft.epage=1570&rft.pages=1557-1570&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.2009.202&rft_dat=%3Cjstor_cross%3E24309645%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24309645&rfr_iscdi=true