Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction

This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shisutemu Seigyo Jouhou Gakkai rombunshi Control and Information Engineers, 2023/08/15, Vol.36(8), pp.279-285
Hauptverfasser: Zhang, Weiqi, Hirata, Kentaro, Nakamura, Yukinori, Okano, Kunihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 8
container_start_page 279
container_title Shisutemu Seigyo Jouhou Gakkai rombunshi
container_volume 36
creator Zhang, Weiqi
Hirata, Kentaro
Nakamura, Yukinori
Okano, Kunihisa
description This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.
doi_str_mv 10.5687/iscie.36.279
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5687_iscie_36_279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_iscie_36_8_36_279_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1979-34b55f03bde9f19ea4891270d8c05d563425da2ef0aaeaa6f578f1a4766ae5733</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EElXpjQfwA5ASx7GdnFBVfqVWIH4kbtHGXoMhTSrbPZSnJ6FVOe1q59uRZgg5Z-lUyEJduqAdTrmcZqo8IqOMFSIpGHs_JiPG8ywRUhanZBKCq1POVM4YFyPiXyLUrnFxS59xBf470K6l172Zx-h-0NDlpokuMW6FbXBdC02vWrsZdvrkO40h0GVnsAkUWkNdDHS2XjdOQxyQ2O3U3t5s9HA6IycWmoCT_RyTt9ub1_l9sni8e5jPFolmpSoTntdC2JTXBkvLSoS8KFmmUlPoVBgh-0zCQIY2BUAAaYUqLINcSQkoFOdjcrHz1b4LwaOt1t71EbcVS6uhsuqvsorLqq-sx692-FeI8IEHGHx0usF_uNh_HBT9Cb7Clv8CSCl5kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Zhang, Weiqi ; Hirata, Kentaro ; Nakamura, Yukinori ; Okano, Kunihisa</creator><creatorcontrib>Zhang, Weiqi ; Hirata, Kentaro ; Nakamura, Yukinori ; Okano, Kunihisa</creatorcontrib><description>This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.</description><identifier>ISSN: 1342-5668</identifier><identifier>EISSN: 2185-811X</identifier><identifier>DOI: 10.5687/iscie.36.279</identifier><language>eng</language><publisher>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</publisher><subject>diffusion process ; model reduction ; Schur stability ; stability preservation</subject><ispartof>Transactions of the Institute of Systems, Control and Information Engineers, 2023/08/15, Vol.36(8), pp.279-285</ispartof><rights>2023 The Institute of Systems, Control and Information Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1979-34b55f03bde9f19ea4891270d8c05d563425da2ef0aaeaa6f578f1a4766ae5733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Weiqi</creatorcontrib><creatorcontrib>Hirata, Kentaro</creatorcontrib><creatorcontrib>Nakamura, Yukinori</creatorcontrib><creatorcontrib>Okano, Kunihisa</creatorcontrib><title>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</title><title>Shisutemu Seigyo Jouhou Gakkai rombunshi</title><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><description>This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.</description><subject>diffusion process</subject><subject>model reduction</subject><subject>Schur stability</subject><subject>stability preservation</subject><issn>1342-5668</issn><issn>2185-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EElXpjQfwA5ASx7GdnFBVfqVWIH4kbtHGXoMhTSrbPZSnJ6FVOe1q59uRZgg5Z-lUyEJduqAdTrmcZqo8IqOMFSIpGHs_JiPG8ywRUhanZBKCq1POVM4YFyPiXyLUrnFxS59xBf470K6l172Zx-h-0NDlpokuMW6FbXBdC02vWrsZdvrkO40h0GVnsAkUWkNdDHS2XjdOQxyQ2O3U3t5s9HA6IycWmoCT_RyTt9ub1_l9sni8e5jPFolmpSoTntdC2JTXBkvLSoS8KFmmUlPoVBgh-0zCQIY2BUAAaYUqLINcSQkoFOdjcrHz1b4LwaOt1t71EbcVS6uhsuqvsorLqq-sx692-FeI8IEHGHx0usF_uNh_HBT9Cb7Clv8CSCl5kQ</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Zhang, Weiqi</creator><creator>Hirata, Kentaro</creator><creator>Nakamura, Yukinori</creator><creator>Okano, Kunihisa</creator><general>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230815</creationdate><title>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</title><author>Zhang, Weiqi ; Hirata, Kentaro ; Nakamura, Yukinori ; Okano, Kunihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1979-34b55f03bde9f19ea4891270d8c05d563425da2ef0aaeaa6f578f1a4766ae5733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>diffusion process</topic><topic>model reduction</topic><topic>Schur stability</topic><topic>stability preservation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weiqi</creatorcontrib><creatorcontrib>Hirata, Kentaro</creatorcontrib><creatorcontrib>Nakamura, Yukinori</creatorcontrib><creatorcontrib>Okano, Kunihisa</creatorcontrib><collection>CrossRef</collection><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weiqi</au><au>Hirata, Kentaro</au><au>Nakamura, Yukinori</au><au>Okano, Kunihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</atitle><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><date>2023-08-15</date><risdate>2023</risdate><volume>36</volume><issue>8</issue><spage>279</spage><epage>285</epage><pages>279-285</pages><issn>1342-5668</issn><eissn>2185-811X</eissn><abstract>This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.</abstract><pub>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</pub><doi>10.5687/iscie.36.279</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-5668
ispartof Transactions of the Institute of Systems, Control and Information Engineers, 2023/08/15, Vol.36(8), pp.279-285
issn 1342-5668
2185-811X
language eng
recordid cdi_crossref_primary_10_5687_iscie_36_279
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects diffusion process
model reduction
Schur stability
stability preservation
title Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Remarks%20on%20Discretized%20Multi-dimensional%20Diffusion%20Process%20Models%20and%20its%20Application%20to%20Model%20Reduction&rft.jtitle=Shisutemu%20Seigyo%20Jouhou%20Gakkai%20rombunshi&rft.au=Zhang,%20Weiqi&rft.date=2023-08-15&rft.volume=36&rft.issue=8&rft.spage=279&rft.epage=285&rft.pages=279-285&rft.issn=1342-5668&rft.eissn=2185-811X&rft_id=info:doi/10.5687/iscie.36.279&rft_dat=%3Cjstage_cross%3Earticle_iscie_36_8_36_279_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true