Comparative analysis of anomaly recognition methods in real time
The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor a...
Gespeichert in:
Veröffentlicht in: | Research briefs on information & communication technology evolution 2021-10, Vol.7, p.113-126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | Research briefs on information & communication technology evolution |
container_volume | 7 |
creator | Nikita V. Gololobov Konstantin E. Izrailov Igor V. Kotenko |
description | The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets. |
doi_str_mv | 10.56801/rebicte.v7i.122 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_56801_rebicte_v7i_122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_56801_rebicte_v7i_122</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_56801_rebicte_v7i_1223</originalsourceid><addsrcrecordid>eNqdjr0KwjAUhYMoWLS7Y16g9Sb1p25CUXwA9xBrqleapuSGQt_eIA7OcobzAwc-xlYC8u2uBLH25oZ1MPmwx1xIOWGJLMoiO0gQ0588ZynRCwBkFGwgYcfK2V57HXAwXHe6HQmJuyZmZ2Pj3tTu0WFA13FrwtPdiWMXZ93ygNYs2azRLZn06wsG59O1umS1d0TeNKr3aLUflQD1gVVfWBVhVYQt_ri8AciCS80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative analysis of anomaly recognition methods in real time</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nikita V. Gololobov ; Konstantin E. Izrailov ; Igor V. Kotenko</creator><creatorcontrib>Nikita V. Gololobov ; Konstantin E. Izrailov ; Igor V. Kotenko</creatorcontrib><description>The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets.</description><identifier>ISSN: 2383-9201</identifier><identifier>EISSN: 2383-9201</identifier><identifier>DOI: 10.56801/rebicte.v7i.122</identifier><language>eng</language><ispartof>Research briefs on information & communication technology evolution, 2021-10, Vol.7, p.113-126</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikita V. Gololobov</creatorcontrib><creatorcontrib>Konstantin E. Izrailov</creatorcontrib><creatorcontrib>Igor V. Kotenko</creatorcontrib><title>Comparative analysis of anomaly recognition methods in real time</title><title>Research briefs on information & communication technology evolution</title><description>The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets.</description><issn>2383-9201</issn><issn>2383-9201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdjr0KwjAUhYMoWLS7Y16g9Sb1p25CUXwA9xBrqleapuSGQt_eIA7OcobzAwc-xlYC8u2uBLH25oZ1MPmwx1xIOWGJLMoiO0gQ0588ZynRCwBkFGwgYcfK2V57HXAwXHe6HQmJuyZmZ2Pj3tTu0WFA13FrwtPdiWMXZ93ygNYs2azRLZn06wsG59O1umS1d0TeNKr3aLUflQD1gVVfWBVhVYQt_ri8AciCS80</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Nikita V. Gololobov</creator><creator>Konstantin E. Izrailov</creator><creator>Igor V. Kotenko</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211015</creationdate><title>Comparative analysis of anomaly recognition methods in real time</title><author>Nikita V. Gololobov ; Konstantin E. Izrailov ; Igor V. Kotenko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_56801_rebicte_v7i_1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nikita V. Gololobov</creatorcontrib><creatorcontrib>Konstantin E. Izrailov</creatorcontrib><creatorcontrib>Igor V. Kotenko</creatorcontrib><collection>CrossRef</collection><jtitle>Research briefs on information & communication technology evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikita V. Gololobov</au><au>Konstantin E. Izrailov</au><au>Igor V. Kotenko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of anomaly recognition methods in real time</atitle><jtitle>Research briefs on information & communication technology evolution</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>7</volume><spage>113</spage><epage>126</epage><pages>113-126</pages><issn>2383-9201</issn><eissn>2383-9201</eissn><abstract>The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets.</abstract><doi>10.56801/rebicte.v7i.122</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2383-9201 |
ispartof | Research briefs on information & communication technology evolution, 2021-10, Vol.7, p.113-126 |
issn | 2383-9201 2383-9201 |
language | eng |
recordid | cdi_crossref_primary_10_56801_rebicte_v7i_122 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Comparative analysis of anomaly recognition methods in real time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20anomaly%20recognition%20methods%20in%20real%20time&rft.jtitle=Research%20briefs%20on%20information%20&%20communication%20technology%20evolution&rft.au=Nikita%20V.%20Gololobov&rft.date=2021-10-15&rft.volume=7&rft.spage=113&rft.epage=126&rft.pages=113-126&rft.issn=2383-9201&rft.eissn=2383-9201&rft_id=info:doi/10.56801/rebicte.v7i.122&rft_dat=%3Ccrossref%3E10_56801_rebicte_v7i_122%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |