Comparative analysis of anomaly recognition methods in real time

The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research briefs on information & communication technology evolution 2021-10, Vol.7, p.113-126
Hauptverfasser: Nikita V. Gololobov, Konstantin E. Izrailov, Igor V. Kotenko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 113
container_title Research briefs on information & communication technology evolution
container_volume 7
creator Nikita V. Gololobov
Konstantin E. Izrailov
Igor V. Kotenko
description The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets.
doi_str_mv 10.56801/rebicte.v7i.122
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_56801_rebicte_v7i_122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_56801_rebicte_v7i_122</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_56801_rebicte_v7i_1223</originalsourceid><addsrcrecordid>eNqdjr0KwjAUhYMoWLS7Y16g9Sb1p25CUXwA9xBrqleapuSGQt_eIA7OcobzAwc-xlYC8u2uBLH25oZ1MPmwx1xIOWGJLMoiO0gQ0588ZynRCwBkFGwgYcfK2V57HXAwXHe6HQmJuyZmZ2Pj3tTu0WFA13FrwtPdiWMXZ93ygNYs2azRLZn06wsG59O1umS1d0TeNKr3aLUflQD1gVVfWBVhVYQt_ri8AciCS80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative analysis of anomaly recognition methods in real time</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nikita V. Gololobov ; Konstantin E. Izrailov ; Igor V. Kotenko</creator><creatorcontrib>Nikita V. Gololobov ; Konstantin E. Izrailov ; Igor V. Kotenko</creatorcontrib><description>The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets.</description><identifier>ISSN: 2383-9201</identifier><identifier>EISSN: 2383-9201</identifier><identifier>DOI: 10.56801/rebicte.v7i.122</identifier><language>eng</language><ispartof>Research briefs on information &amp; communication technology evolution, 2021-10, Vol.7, p.113-126</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikita V. Gololobov</creatorcontrib><creatorcontrib>Konstantin E. Izrailov</creatorcontrib><creatorcontrib>Igor V. Kotenko</creatorcontrib><title>Comparative analysis of anomaly recognition methods in real time</title><title>Research briefs on information &amp; communication technology evolution</title><description>The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets.</description><issn>2383-9201</issn><issn>2383-9201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdjr0KwjAUhYMoWLS7Y16g9Sb1p25CUXwA9xBrqleapuSGQt_eIA7OcobzAwc-xlYC8u2uBLH25oZ1MPmwx1xIOWGJLMoiO0gQ0588ZynRCwBkFGwgYcfK2V57HXAwXHe6HQmJuyZmZ2Pj3tTu0WFA13FrwtPdiWMXZ93ygNYs2azRLZn06wsG59O1umS1d0TeNKr3aLUflQD1gVVfWBVhVYQt_ri8AciCS80</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Nikita V. Gololobov</creator><creator>Konstantin E. Izrailov</creator><creator>Igor V. Kotenko</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211015</creationdate><title>Comparative analysis of anomaly recognition methods in real time</title><author>Nikita V. Gololobov ; Konstantin E. Izrailov ; Igor V. Kotenko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_56801_rebicte_v7i_1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nikita V. Gololobov</creatorcontrib><creatorcontrib>Konstantin E. Izrailov</creatorcontrib><creatorcontrib>Igor V. Kotenko</creatorcontrib><collection>CrossRef</collection><jtitle>Research briefs on information &amp; communication technology evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikita V. Gololobov</au><au>Konstantin E. Izrailov</au><au>Igor V. Kotenko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of anomaly recognition methods in real time</atitle><jtitle>Research briefs on information &amp; communication technology evolution</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>7</volume><spage>113</spage><epage>126</epage><pages>113-126</pages><issn>2383-9201</issn><eissn>2383-9201</eissn><abstract>The article discusses modern classes of algorithms used to detect anomalies in data streams: slidingwindow algorithm, metric algorithms, predictive-based algorithms, and algorithms based on hiddenMarkov models. During the research, it was possible to determine functional and efficiency criteriafor assessing the class of algorithms and then comparing it with other considered classes. In addition,for each class of methods, strengths and weaknesses are given, the scope is described, and a generalizedexample of implementation in the form of pseudo code is given. The use of this approach makesit possible to cover entire groups of algorithms without reference to a specific implementation. Theconclusions obtained as a result of the research can be applied solving problems of optimizing theprocess of detecting anomalies or increasing the efficiency of applied solutions used in these scenarios.The resulting calculations allow further development and optimization of methods in this areafor unlabeled fixed data sets.</abstract><doi>10.56801/rebicte.v7i.122</doi></addata></record>
fulltext fulltext
identifier ISSN: 2383-9201
ispartof Research briefs on information & communication technology evolution, 2021-10, Vol.7, p.113-126
issn 2383-9201
2383-9201
language eng
recordid cdi_crossref_primary_10_56801_rebicte_v7i_122
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Comparative analysis of anomaly recognition methods in real time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20anomaly%20recognition%20methods%20in%20real%20time&rft.jtitle=Research%20briefs%20on%20information%20&%20communication%20technology%20evolution&rft.au=Nikita%20V.%20Gololobov&rft.date=2021-10-15&rft.volume=7&rft.spage=113&rft.epage=126&rft.pages=113-126&rft.issn=2383-9201&rft.eissn=2383-9201&rft_id=info:doi/10.56801/rebicte.v7i.122&rft_dat=%3Ccrossref%3E10_56801_rebicte_v7i_122%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true