Portfolio Optimization Using Conditional Sharpe Ratio

In this paper we propose a portfolio optimization model that selects the portfolio with the largest worse-case-scenario sharpe ratio with a given confidence level. We highlight the relationship between conditional value-atrisk based sharpe ratio and standard deviation based sharpe ratio proposed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International letters of chemistry, physics and astronomy physics and astronomy, 2015-07, Vol.53, p.130-136
Hauptverfasser: Baweja, Meena, Saxena, Ratnesh R., Sehgal, Deepak
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 130
container_title International letters of chemistry, physics and astronomy
container_volume 53
creator Baweja, Meena
Saxena, Ratnesh R.
Sehgal, Deepak
description In this paper we propose a portfolio optimization model that selects the portfolio with the largest worse-case-scenario sharpe ratio with a given confidence level. We highlight the relationship between conditional value-atrisk based sharpe ratio and standard deviation based sharpe ratio proposed in literature. By utilizing the results of Rockafellar and Uryasev [5], we evaluate conditional value- at- risk for each portfolio. Our model is expected to enlarge the application area of practical investment problems for which the original sharpe ratio is not suitable, however should device effective computational methods to solve optimal portfolio selection problems with large number of investment opportunities. Here conditional sharpe ratio is defined as the ratio of expected excess return to the expected shortfall. This optimization considers both risk and return, of which changes will effect the sharpe ratio. That is the fitness function for dynamic portfolio is the objective function of the model.
doi_str_mv 10.56431/p-1pcx1p
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_56431_p_1pcx1p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_56431_p_1pcx1p</sourcerecordid><originalsourceid>FETCH-LOGICAL-c109p-a66671b8f730577e8265cf62e8161d77bf069b91d35bc7f7baec766ee724d8e23</originalsourceid><addsrcrecordid>eNpNj0tLAzEYRYMoWGoX_oPZuhjNl3eWMvgoFCpq1yGTSTQynYRkFuqvl1oXru69HLhwELoEfM0Fo3CTW8juE_IJWhCidUsVo6f_-jla1fqBMQbCNTC2QPwplTmkMaZmm-e4j992jmlqdjVOb02XpiEeth2bl3dbsm-eD_wCnQU7Vr_6yyXa3d-9do_tZvuw7m43rQOsc2uFEBJ6FSTFXEqviOAuCOIVCBik7AMWutcwUN47GWRvvZNCeC8JG5QndImujr-upFqLDyaXuLflywA2v8omm6My_QEvBUoB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Portfolio Optimization Using Conditional Sharpe Ratio</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baweja, Meena ; Saxena, Ratnesh R. ; Sehgal, Deepak</creator><creatorcontrib>Baweja, Meena ; Saxena, Ratnesh R. ; Sehgal, Deepak</creatorcontrib><description>In this paper we propose a portfolio optimization model that selects the portfolio with the largest worse-case-scenario sharpe ratio with a given confidence level. We highlight the relationship between conditional value-atrisk based sharpe ratio and standard deviation based sharpe ratio proposed in literature. By utilizing the results of Rockafellar and Uryasev [5], we evaluate conditional value- at- risk for each portfolio. Our model is expected to enlarge the application area of practical investment problems for which the original sharpe ratio is not suitable, however should device effective computational methods to solve optimal portfolio selection problems with large number of investment opportunities. Here conditional sharpe ratio is defined as the ratio of expected excess return to the expected shortfall. This optimization considers both risk and return, of which changes will effect the sharpe ratio. That is the fitness function for dynamic portfolio is the objective function of the model.</description><identifier>ISSN: 2299-3843</identifier><identifier>EISSN: 2299-3843</identifier><identifier>DOI: 10.56431/p-1pcx1p</identifier><language>eng</language><ispartof>International letters of chemistry, physics and astronomy, 2015-07, Vol.53, p.130-136</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c109p-a66671b8f730577e8265cf62e8161d77bf069b91d35bc7f7baec766ee724d8e23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baweja, Meena</creatorcontrib><creatorcontrib>Saxena, Ratnesh R.</creatorcontrib><creatorcontrib>Sehgal, Deepak</creatorcontrib><title>Portfolio Optimization Using Conditional Sharpe Ratio</title><title>International letters of chemistry, physics and astronomy</title><description>In this paper we propose a portfolio optimization model that selects the portfolio with the largest worse-case-scenario sharpe ratio with a given confidence level. We highlight the relationship between conditional value-atrisk based sharpe ratio and standard deviation based sharpe ratio proposed in literature. By utilizing the results of Rockafellar and Uryasev [5], we evaluate conditional value- at- risk for each portfolio. Our model is expected to enlarge the application area of practical investment problems for which the original sharpe ratio is not suitable, however should device effective computational methods to solve optimal portfolio selection problems with large number of investment opportunities. Here conditional sharpe ratio is defined as the ratio of expected excess return to the expected shortfall. This optimization considers both risk and return, of which changes will effect the sharpe ratio. That is the fitness function for dynamic portfolio is the objective function of the model.</description><issn>2299-3843</issn><issn>2299-3843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLAzEYRYMoWGoX_oPZuhjNl3eWMvgoFCpq1yGTSTQynYRkFuqvl1oXru69HLhwELoEfM0Fo3CTW8juE_IJWhCidUsVo6f_-jla1fqBMQbCNTC2QPwplTmkMaZmm-e4j992jmlqdjVOb02XpiEeth2bl3dbsm-eD_wCnQU7Vr_6yyXa3d-9do_tZvuw7m43rQOsc2uFEBJ6FSTFXEqviOAuCOIVCBik7AMWutcwUN47GWRvvZNCeC8JG5QndImujr-upFqLDyaXuLflywA2v8omm6My_QEvBUoB</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Baweja, Meena</creator><creator>Saxena, Ratnesh R.</creator><creator>Sehgal, Deepak</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Portfolio Optimization Using Conditional Sharpe Ratio</title><author>Baweja, Meena ; Saxena, Ratnesh R. ; Sehgal, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c109p-a66671b8f730577e8265cf62e8161d77bf069b91d35bc7f7baec766ee724d8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Baweja, Meena</creatorcontrib><creatorcontrib>Saxena, Ratnesh R.</creatorcontrib><creatorcontrib>Sehgal, Deepak</creatorcontrib><collection>CrossRef</collection><jtitle>International letters of chemistry, physics and astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baweja, Meena</au><au>Saxena, Ratnesh R.</au><au>Sehgal, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio Optimization Using Conditional Sharpe Ratio</atitle><jtitle>International letters of chemistry, physics and astronomy</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>53</volume><spage>130</spage><epage>136</epage><pages>130-136</pages><issn>2299-3843</issn><eissn>2299-3843</eissn><abstract>In this paper we propose a portfolio optimization model that selects the portfolio with the largest worse-case-scenario sharpe ratio with a given confidence level. We highlight the relationship between conditional value-atrisk based sharpe ratio and standard deviation based sharpe ratio proposed in literature. By utilizing the results of Rockafellar and Uryasev [5], we evaluate conditional value- at- risk for each portfolio. Our model is expected to enlarge the application area of practical investment problems for which the original sharpe ratio is not suitable, however should device effective computational methods to solve optimal portfolio selection problems with large number of investment opportunities. Here conditional sharpe ratio is defined as the ratio of expected excess return to the expected shortfall. This optimization considers both risk and return, of which changes will effect the sharpe ratio. That is the fitness function for dynamic portfolio is the objective function of the model.</abstract><doi>10.56431/p-1pcx1p</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2299-3843
ispartof International letters of chemistry, physics and astronomy, 2015-07, Vol.53, p.130-136
issn 2299-3843
2299-3843
language eng
recordid cdi_crossref_primary_10_56431_p_1pcx1p
source EZB-FREE-00999 freely available EZB journals
title Portfolio Optimization Using Conditional Sharpe Ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20Optimization%20Using%20Conditional%20Sharpe%20Ratio&rft.jtitle=International%20letters%20of%20chemistry,%20physics%20and%20astronomy&rft.au=Baweja,%20Meena&rft.date=2015-07-01&rft.volume=53&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.issn=2299-3843&rft.eissn=2299-3843&rft_id=info:doi/10.56431/p-1pcx1p&rft_dat=%3Ccrossref%3E10_56431_p_1pcx1p%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true