Portfolio optimization using Artificial Intelligence: a systematic literature review

Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Exacta 2024-07, Vol.22 (3), p.766-787
Hauptverfasser: Santos, Gustavo Carvalho, Barboza, Flavio, Veiga, Antônio Cláudio Paschoarelli, Souza, Kamyr Gomes de
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 3
container_start_page 766
container_title Exacta
container_volume 22
creator Santos, Gustavo Carvalho
Barboza, Flavio
Veiga, Antônio Cláudio Paschoarelli
Souza, Kamyr Gomes de
description Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.
doi_str_mv 10.5585/exactaep.2022.21882
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5585_exactaep_2022_21882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5585_exactaep_2022_21882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</originalsourceid><addsrcrecordid>eNo10MlKA0EQBuBGFAwxT-ClX2BiL9PLeAvBJRDQQzwPlZ6aUDBL6O6o8elNXE71H4qfn4-xWynmxnhzh58QMuB-roRScyW9VxdsIiuvi0oLf3nK1vnClMpfs1lKtBVl6bS1pZ2wzesYczt2NPJxn6mnL8g0DvyQaNjxRczUUiDo-GrI2HW0wyHgPQeejiljf3oOvKOMEfIhIo_4Tvhxw65a6BLO_u6UvT0-bJbPxfrlabVcrIughFWF040CIaHyDirnlQkSBG6bNrjmtNg2VgIEY0JwYMB546UJCtCZyjceKz1l-rc3xDGliG29j9RDPNZS1Geb-t-mPtvUPzb6GwOBXBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Portfolio optimization using Artificial Intelligence: a systematic literature review</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Santos, Gustavo Carvalho ; Barboza, Flavio ; Veiga, Antônio Cláudio Paschoarelli ; Souza, Kamyr Gomes de</creator><creatorcontrib>Santos, Gustavo Carvalho ; Barboza, Flavio ; Veiga, Antônio Cláudio Paschoarelli ; Souza, Kamyr Gomes de</creatorcontrib><description>Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.</description><identifier>ISSN: 1678-5428</identifier><identifier>EISSN: 1983-9308</identifier><identifier>DOI: 10.5585/exactaep.2022.21882</identifier><language>eng</language><ispartof>Exacta, 2024-07, Vol.22 (3), p.766-787</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</citedby><cites>FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</cites><orcidid>0000-0001-9489-4479 ; 0000-0003-0933-5184 ; 0000-0002-3449-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Santos, Gustavo Carvalho</creatorcontrib><creatorcontrib>Barboza, Flavio</creatorcontrib><creatorcontrib>Veiga, Antônio Cláudio Paschoarelli</creatorcontrib><creatorcontrib>Souza, Kamyr Gomes de</creatorcontrib><title>Portfolio optimization using Artificial Intelligence: a systematic literature review</title><title>Exacta</title><description>Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.</description><issn>1678-5428</issn><issn>1983-9308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo10MlKA0EQBuBGFAwxT-ClX2BiL9PLeAvBJRDQQzwPlZ6aUDBL6O6o8elNXE71H4qfn4-xWynmxnhzh58QMuB-roRScyW9VxdsIiuvi0oLf3nK1vnClMpfs1lKtBVl6bS1pZ2wzesYczt2NPJxn6mnL8g0DvyQaNjxRczUUiDo-GrI2HW0wyHgPQeejiljf3oOvKOMEfIhIo_4Tvhxw65a6BLO_u6UvT0-bJbPxfrlabVcrIughFWF040CIaHyDirnlQkSBG6bNrjmtNg2VgIEY0JwYMB546UJCtCZyjceKz1l-rc3xDGliG29j9RDPNZS1Geb-t-mPtvUPzb6GwOBXBg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Santos, Gustavo Carvalho</creator><creator>Barboza, Flavio</creator><creator>Veiga, Antônio Cláudio Paschoarelli</creator><creator>Souza, Kamyr Gomes de</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9489-4479</orcidid><orcidid>https://orcid.org/0000-0003-0933-5184</orcidid><orcidid>https://orcid.org/0000-0002-3449-5297</orcidid></search><sort><creationdate>20240701</creationdate><title>Portfolio optimization using Artificial Intelligence: a systematic literature review</title><author>Santos, Gustavo Carvalho ; Barboza, Flavio ; Veiga, Antônio Cláudio Paschoarelli ; Souza, Kamyr Gomes de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Santos, Gustavo Carvalho</creatorcontrib><creatorcontrib>Barboza, Flavio</creatorcontrib><creatorcontrib>Veiga, Antônio Cláudio Paschoarelli</creatorcontrib><creatorcontrib>Souza, Kamyr Gomes de</creatorcontrib><collection>CrossRef</collection><jtitle>Exacta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Gustavo Carvalho</au><au>Barboza, Flavio</au><au>Veiga, Antônio Cláudio Paschoarelli</au><au>Souza, Kamyr Gomes de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio optimization using Artificial Intelligence: a systematic literature review</atitle><jtitle>Exacta</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>22</volume><issue>3</issue><spage>766</spage><epage>787</epage><pages>766-787</pages><issn>1678-5428</issn><eissn>1983-9308</eissn><abstract>Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.</abstract><doi>10.5585/exactaep.2022.21882</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9489-4479</orcidid><orcidid>https://orcid.org/0000-0003-0933-5184</orcidid><orcidid>https://orcid.org/0000-0002-3449-5297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1678-5428
ispartof Exacta, 2024-07, Vol.22 (3), p.766-787
issn 1678-5428
1983-9308
language eng
recordid cdi_crossref_primary_10_5585_exactaep_2022_21882
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Portfolio optimization using Artificial Intelligence: a systematic literature review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20optimization%20using%20Artificial%20Intelligence:%20a%20systematic%20literature%20review&rft.jtitle=Exacta&rft.au=Santos,%20Gustavo%20Carvalho&rft.date=2024-07-01&rft.volume=22&rft.issue=3&rft.spage=766&rft.epage=787&rft.pages=766-787&rft.issn=1678-5428&rft.eissn=1983-9308&rft_id=info:doi/10.5585/exactaep.2022.21882&rft_dat=%3Ccrossref%3E10_5585_exactaep_2022_21882%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true