Portfolio optimization using Artificial Intelligence: a systematic literature review
Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of inv...
Gespeichert in:
Veröffentlicht in: | Exacta 2024-07, Vol.22 (3), p.766-787 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 787 |
---|---|
container_issue | 3 |
container_start_page | 766 |
container_title | Exacta |
container_volume | 22 |
creator | Santos, Gustavo Carvalho Barboza, Flavio Veiga, Antônio Cláudio Paschoarelli Souza, Kamyr Gomes de |
description | Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic. |
doi_str_mv | 10.5585/exactaep.2022.21882 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5585_exactaep_2022_21882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5585_exactaep_2022_21882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</originalsourceid><addsrcrecordid>eNo10MlKA0EQBuBGFAwxT-ClX2BiL9PLeAvBJRDQQzwPlZ6aUDBL6O6o8elNXE71H4qfn4-xWynmxnhzh58QMuB-roRScyW9VxdsIiuvi0oLf3nK1vnClMpfs1lKtBVl6bS1pZ2wzesYczt2NPJxn6mnL8g0DvyQaNjxRczUUiDo-GrI2HW0wyHgPQeejiljf3oOvKOMEfIhIo_4Tvhxw65a6BLO_u6UvT0-bJbPxfrlabVcrIughFWF040CIaHyDirnlQkSBG6bNrjmtNg2VgIEY0JwYMB546UJCtCZyjceKz1l-rc3xDGliG29j9RDPNZS1Geb-t-mPtvUPzb6GwOBXBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Portfolio optimization using Artificial Intelligence: a systematic literature review</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Santos, Gustavo Carvalho ; Barboza, Flavio ; Veiga, Antônio Cláudio Paschoarelli ; Souza, Kamyr Gomes de</creator><creatorcontrib>Santos, Gustavo Carvalho ; Barboza, Flavio ; Veiga, Antônio Cláudio Paschoarelli ; Souza, Kamyr Gomes de</creatorcontrib><description>Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.</description><identifier>ISSN: 1678-5428</identifier><identifier>EISSN: 1983-9308</identifier><identifier>DOI: 10.5585/exactaep.2022.21882</identifier><language>eng</language><ispartof>Exacta, 2024-07, Vol.22 (3), p.766-787</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</citedby><cites>FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</cites><orcidid>0000-0001-9489-4479 ; 0000-0003-0933-5184 ; 0000-0002-3449-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Santos, Gustavo Carvalho</creatorcontrib><creatorcontrib>Barboza, Flavio</creatorcontrib><creatorcontrib>Veiga, Antônio Cláudio Paschoarelli</creatorcontrib><creatorcontrib>Souza, Kamyr Gomes de</creatorcontrib><title>Portfolio optimization using Artificial Intelligence: a systematic literature review</title><title>Exacta</title><description>Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.</description><issn>1678-5428</issn><issn>1983-9308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo10MlKA0EQBuBGFAwxT-ClX2BiL9PLeAvBJRDQQzwPlZ6aUDBL6O6o8elNXE71H4qfn4-xWynmxnhzh58QMuB-roRScyW9VxdsIiuvi0oLf3nK1vnClMpfs1lKtBVl6bS1pZ2wzesYczt2NPJxn6mnL8g0DvyQaNjxRczUUiDo-GrI2HW0wyHgPQeejiljf3oOvKOMEfIhIo_4Tvhxw65a6BLO_u6UvT0-bJbPxfrlabVcrIughFWF040CIaHyDirnlQkSBG6bNrjmtNg2VgIEY0JwYMB546UJCtCZyjceKz1l-rc3xDGliG29j9RDPNZS1Geb-t-mPtvUPzb6GwOBXBg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Santos, Gustavo Carvalho</creator><creator>Barboza, Flavio</creator><creator>Veiga, Antônio Cláudio Paschoarelli</creator><creator>Souza, Kamyr Gomes de</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9489-4479</orcidid><orcidid>https://orcid.org/0000-0003-0933-5184</orcidid><orcidid>https://orcid.org/0000-0002-3449-5297</orcidid></search><sort><creationdate>20240701</creationdate><title>Portfolio optimization using Artificial Intelligence: a systematic literature review</title><author>Santos, Gustavo Carvalho ; Barboza, Flavio ; Veiga, Antônio Cláudio Paschoarelli ; Souza, Kamyr Gomes de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2062-73d2a01a987a97825c1a0ebdfc7d6786d61aac55cc7a5a785815c2ae7598d8e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Santos, Gustavo Carvalho</creatorcontrib><creatorcontrib>Barboza, Flavio</creatorcontrib><creatorcontrib>Veiga, Antônio Cláudio Paschoarelli</creatorcontrib><creatorcontrib>Souza, Kamyr Gomes de</creatorcontrib><collection>CrossRef</collection><jtitle>Exacta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Gustavo Carvalho</au><au>Barboza, Flavio</au><au>Veiga, Antônio Cláudio Paschoarelli</au><au>Souza, Kamyr Gomes de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio optimization using Artificial Intelligence: a systematic literature review</atitle><jtitle>Exacta</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>22</volume><issue>3</issue><spage>766</spage><epage>787</epage><pages>766-787</pages><issn>1678-5428</issn><eissn>1983-9308</eissn><abstract>Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.</abstract><doi>10.5585/exactaep.2022.21882</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9489-4479</orcidid><orcidid>https://orcid.org/0000-0003-0933-5184</orcidid><orcidid>https://orcid.org/0000-0002-3449-5297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-5428 |
ispartof | Exacta, 2024-07, Vol.22 (3), p.766-787 |
issn | 1678-5428 1983-9308 |
language | eng |
recordid | cdi_crossref_primary_10_5585_exactaep_2022_21882 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Portfolio optimization using Artificial Intelligence: a systematic literature review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20optimization%20using%20Artificial%20Intelligence:%20a%20systematic%20literature%20review&rft.jtitle=Exacta&rft.au=Santos,%20Gustavo%20Carvalho&rft.date=2024-07-01&rft.volume=22&rft.issue=3&rft.spage=766&rft.epage=787&rft.pages=766-787&rft.issn=1678-5428&rft.eissn=1983-9308&rft_id=info:doi/10.5585/exactaep.2022.21882&rft_dat=%3Ccrossref%3E10_5585_exactaep_2022_21882%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |