Multifractional processes with random exponent

Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet serie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publicacions matemàtiques 2005, Vol.49 (2), p.459-486
Hauptverfasser: Ayache, A., Taqqu, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 2
container_start_page 459
container_title Publicacions matemàtiques
container_volume 49
creator Ayache, A.
Taqqu, M. S.
description Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-similarity.
doi_str_mv 10.5565/PUBLMAT_49205_11
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5565_PUBLMAT_49205_11</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736827</jstor_id><sourcerecordid>43736827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-1e94d9b37df9171f2fa83b628a0c4d96d567674a2ac3d70e54bc8c45d987ec8a3</originalsourceid><addsrcrecordid>eNpdj01LwzAcxoMoWKd3L0I_gJ15bZLjHE6FDj1s5_BvmmJH14wkQ_32Vjo8eHoeeF7gh9AtwXMhSvHwvn2s1ouN4ZpiYQg5QxnFhBecCXyOMkxHT7hml-gqxh3GVCnMMzRfH_vUtQFs6vwAfX4I3roYXcw_u_SRBxgav8_d18EPbkjX6KKFPrqbk87QdvW0Wb4U1dvz63JRFZZpkgriNG90zWTTaiJJS1tQrC6pAmzHoGxEKUvJgYJljcRO8Noqy0WjlXRWAZshPP3a4GMMrjWH0O0hfBuCzS-v-c87Tu6myS4mH_76nElWKirH_P50GY_WjMDeeOgmYyEZCKmzvTOEKqYk-wGlfWNd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifractional processes with random exponent</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>Revistes Catalanes amb Accés Obert (RACO)</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Ayache, A. ; Taqqu, M. S.</creator><creatorcontrib>Ayache, A. ; Taqqu, M. S.</creatorcontrib><description>Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-similarity.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_49205_11</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Brownian motion ; Fourier transformations ; Integers ; Mathematical functions ; Mathematical integrals ; Random variables ; Series convergence ; Stochastic processes ; Trajectories ; White noise</subject><ispartof>Publicacions matemàtiques, 2005, Vol.49 (2), p.459-486</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-1e94d9b37df9171f2fa83b628a0c4d96d567674a2ac3d70e54bc8c45d987ec8a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736827$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736827$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4010,27026,27900,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Ayache, A.</creatorcontrib><creatorcontrib>Taqqu, M. S.</creatorcontrib><title>Multifractional processes with random exponent</title><title>Publicacions matemàtiques</title><description>Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-similarity.</description><subject>Brownian motion</subject><subject>Fourier transformations</subject><subject>Integers</subject><subject>Mathematical functions</subject><subject>Mathematical integrals</subject><subject>Random variables</subject><subject>Series convergence</subject><subject>Stochastic processes</subject><subject>Trajectories</subject><subject>White noise</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>2VB</sourceid><recordid>eNpdj01LwzAcxoMoWKd3L0I_gJ15bZLjHE6FDj1s5_BvmmJH14wkQ_32Vjo8eHoeeF7gh9AtwXMhSvHwvn2s1ouN4ZpiYQg5QxnFhBecCXyOMkxHT7hml-gqxh3GVCnMMzRfH_vUtQFs6vwAfX4I3roYXcw_u_SRBxgav8_d18EPbkjX6KKFPrqbk87QdvW0Wb4U1dvz63JRFZZpkgriNG90zWTTaiJJS1tQrC6pAmzHoGxEKUvJgYJljcRO8Noqy0WjlXRWAZshPP3a4GMMrjWH0O0hfBuCzS-v-c87Tu6myS4mH_76nElWKirH_P50GY_WjMDeeOgmYyEZCKmzvTOEKqYk-wGlfWNd</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ayache, A.</creator><creator>Taqqu, M. S.</creator><general>Universitat Autònoma de Barcelona</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2005</creationdate><title>Multifractional processes with random exponent</title><author>Ayache, A. ; Taqqu, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-1e94d9b37df9171f2fa83b628a0c4d96d567674a2ac3d70e54bc8c45d987ec8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Brownian motion</topic><topic>Fourier transformations</topic><topic>Integers</topic><topic>Mathematical functions</topic><topic>Mathematical integrals</topic><topic>Random variables</topic><topic>Series convergence</topic><topic>Stochastic processes</topic><topic>Trajectories</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayache, A.</creatorcontrib><creatorcontrib>Taqqu, M. S.</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayache, A.</au><au>Taqqu, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifractional processes with random exponent</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2005</date><risdate>2005</risdate><volume>49</volume><issue>2</issue><spage>459</spage><epage>486</epage><pages>459-486</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-similarity.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_49205_11</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0214-1493
ispartof Publicacions matemàtiques, 2005, Vol.49 (2), p.459-486
issn 0214-1493
2014-4350
language eng
recordid cdi_crossref_primary_10_5565_PUBLMAT_49205_11
source Jstor Complete Legacy; Alma/SFX Local Collection; Revistes Catalanes amb Accés Obert (RACO); JSTOR Mathematics & Statistics
subjects Brownian motion
Fourier transformations
Integers
Mathematical functions
Mathematical integrals
Random variables
Series convergence
Stochastic processes
Trajectories
White noise
title Multifractional processes with random exponent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifractional%20processes%20with%20random%20exponent&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Ayache,%20A.&rft.date=2005&rft.volume=49&rft.issue=2&rft.spage=459&rft.epage=486&rft.pages=459-486&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_49205_11&rft_dat=%3Cjstor_cross%3E43736827%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736827&rfr_iscdi=true