TRAFFIC PLANS
In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more re...
Gespeichert in:
Veröffentlicht in: | Publicacions matemàtiques 2005-01, Vol.49 (2), p.417-451 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | 2 |
container_start_page | 417 |
container_title | Publicacions matemàtiques |
container_volume | 49 |
creator | Bernot, Marc Caselles, Vicent Morel, Jean-Michel |
description | In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem". |
doi_str_mv | 10.5565/PUBLMAT_49205_09 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5565_PUBLMAT_49205_09</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736825</jstor_id><sourcerecordid>43736825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-cc7b1ded09ad29702cfed9267ce38a3a30b2143be93c3eca8e42a1a7bc0f8ed53</originalsourceid><addsrcrecordid>eNpdjzFPwzAUhK0KpIbSnQWJPxD67GfH9hgiQisFqCCdLefZkahARXYX_j1BRQxMd8N9dzrGrjjcKlWp1XZ31z3WvZNWgHJgZ6wQwGUpUcEZK0BMnkuLc3aR8x5AGAOyYMv-pW7bTXOz7eqn10t2Pvr3HJe_umC79r5v1mX3_LBp6q4kBH0sifTAQwxgfRBWg6AxBisqTRGNR48wTHM4RIuEkbyJUnju9UAwmhgULhiceikdck5xdJ_p7cOnL8fB_dxx_-9MyPUJ2efjIf3lJWqsjFD4DWGfRds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TRAFFIC PLANS</title><source>Revistes Catalanes amb Acces Obert (RACO)</source><source>JSTOR Mathematics and Statistics</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Bernot, Marc ; Caselles, Vicent ; Morel, Jean-Michel</creator><creatorcontrib>Bernot, Marc ; Caselles, Vicent ; Morel, Jean-Michel</creatorcontrib><description>In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem".</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_49205_09</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Average linear density ; Cost functions ; Minimization of cost ; Null set ; Parameterization ; Traffic ; Transference ; Transportation ; Transportation costs ; Transportation networks</subject><ispartof>Publicacions matemàtiques, 2005-01, Vol.49 (2), p.417-451</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-cc7b1ded09ad29702cfed9267ce38a3a30b2143be93c3eca8e42a1a7bc0f8ed53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736825$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736825$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Bernot, Marc</creatorcontrib><creatorcontrib>Caselles, Vicent</creatorcontrib><creatorcontrib>Morel, Jean-Michel</creatorcontrib><title>TRAFFIC PLANS</title><title>Publicacions matemàtiques</title><description>In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem".</description><subject>Average linear density</subject><subject>Cost functions</subject><subject>Minimization of cost</subject><subject>Null set</subject><subject>Parameterization</subject><subject>Traffic</subject><subject>Transference</subject><subject>Transportation</subject><subject>Transportation costs</subject><subject>Transportation networks</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdjzFPwzAUhK0KpIbSnQWJPxD67GfH9hgiQisFqCCdLefZkahARXYX_j1BRQxMd8N9dzrGrjjcKlWp1XZ31z3WvZNWgHJgZ6wQwGUpUcEZK0BMnkuLc3aR8x5AGAOyYMv-pW7bTXOz7eqn10t2Pvr3HJe_umC79r5v1mX3_LBp6q4kBH0sifTAQwxgfRBWg6AxBisqTRGNR48wTHM4RIuEkbyJUnju9UAwmhgULhiceikdck5xdJ_p7cOnL8fB_dxx_-9MyPUJ2efjIf3lJWqsjFD4DWGfRds</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Bernot, Marc</creator><creator>Caselles, Vicent</creator><creator>Morel, Jean-Michel</creator><general>Universitat Autònoma de Barcelona</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050101</creationdate><title>TRAFFIC PLANS</title><author>Bernot, Marc ; Caselles, Vicent ; Morel, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-cc7b1ded09ad29702cfed9267ce38a3a30b2143be93c3eca8e42a1a7bc0f8ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Average linear density</topic><topic>Cost functions</topic><topic>Minimization of cost</topic><topic>Null set</topic><topic>Parameterization</topic><topic>Traffic</topic><topic>Transference</topic><topic>Transportation</topic><topic>Transportation costs</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernot, Marc</creatorcontrib><creatorcontrib>Caselles, Vicent</creatorcontrib><creatorcontrib>Morel, Jean-Michel</creatorcontrib><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernot, Marc</au><au>Caselles, Vicent</au><au>Morel, Jean-Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRAFFIC PLANS</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>49</volume><issue>2</issue><spage>417</spage><epage>451</epage><pages>417-451</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem".</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_49205_09</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0214-1493 |
ispartof | Publicacions matemàtiques, 2005-01, Vol.49 (2), p.417-451 |
issn | 0214-1493 2014-4350 |
language | eng |
recordid | cdi_crossref_primary_10_5565_PUBLMAT_49205_09 |
source | Revistes Catalanes amb Acces Obert (RACO); JSTOR Mathematics and Statistics; Alma/SFX Local Collection; JSTOR |
subjects | Average linear density Cost functions Minimization of cost Null set Parameterization Traffic Transference Transportation Transportation costs Transportation networks |
title | TRAFFIC PLANS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRAFFIC%20PLANS&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Bernot,%20Marc&rft.date=2005-01-01&rft.volume=49&rft.issue=2&rft.spage=417&rft.epage=451&rft.pages=417-451&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_49205_09&rft_dat=%3Cjstor_cross%3E43736825%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736825&rfr_iscdi=true |