TRAFFIC PLANS

In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publicacions matemàtiques 2005-01, Vol.49 (2), p.417-451
Hauptverfasser: Bernot, Marc, Caselles, Vicent, Morel, Jean-Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 2
container_start_page 417
container_title Publicacions matemàtiques
container_volume 49
creator Bernot, Marc
Caselles, Vicent
Morel, Jean-Michel
description In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem".
doi_str_mv 10.5565/PUBLMAT_49205_09
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5565_PUBLMAT_49205_09</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736825</jstor_id><sourcerecordid>43736825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-cc7b1ded09ad29702cfed9267ce38a3a30b2143be93c3eca8e42a1a7bc0f8ed53</originalsourceid><addsrcrecordid>eNpdjzFPwzAUhK0KpIbSnQWJPxD67GfH9hgiQisFqCCdLefZkahARXYX_j1BRQxMd8N9dzrGrjjcKlWp1XZ31z3WvZNWgHJgZ6wQwGUpUcEZK0BMnkuLc3aR8x5AGAOyYMv-pW7bTXOz7eqn10t2Pvr3HJe_umC79r5v1mX3_LBp6q4kBH0sifTAQwxgfRBWg6AxBisqTRGNR48wTHM4RIuEkbyJUnju9UAwmhgULhiceikdck5xdJ_p7cOnL8fB_dxx_-9MyPUJ2efjIf3lJWqsjFD4DWGfRds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TRAFFIC PLANS</title><source>Revistes Catalanes amb Acces Obert (RACO)</source><source>JSTOR Mathematics and Statistics</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Bernot, Marc ; Caselles, Vicent ; Morel, Jean-Michel</creator><creatorcontrib>Bernot, Marc ; Caselles, Vicent ; Morel, Jean-Michel</creatorcontrib><description>In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem".</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_49205_09</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Average linear density ; Cost functions ; Minimization of cost ; Null set ; Parameterization ; Traffic ; Transference ; Transportation ; Transportation costs ; Transportation networks</subject><ispartof>Publicacions matemàtiques, 2005-01, Vol.49 (2), p.417-451</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-cc7b1ded09ad29702cfed9267ce38a3a30b2143be93c3eca8e42a1a7bc0f8ed53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736825$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736825$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Bernot, Marc</creatorcontrib><creatorcontrib>Caselles, Vicent</creatorcontrib><creatorcontrib>Morel, Jean-Michel</creatorcontrib><title>TRAFFIC PLANS</title><title>Publicacions matemàtiques</title><description>In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem".</description><subject>Average linear density</subject><subject>Cost functions</subject><subject>Minimization of cost</subject><subject>Null set</subject><subject>Parameterization</subject><subject>Traffic</subject><subject>Transference</subject><subject>Transportation</subject><subject>Transportation costs</subject><subject>Transportation networks</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdjzFPwzAUhK0KpIbSnQWJPxD67GfH9hgiQisFqCCdLefZkahARXYX_j1BRQxMd8N9dzrGrjjcKlWp1XZ31z3WvZNWgHJgZ6wQwGUpUcEZK0BMnkuLc3aR8x5AGAOyYMv-pW7bTXOz7eqn10t2Pvr3HJe_umC79r5v1mX3_LBp6q4kBH0sifTAQwxgfRBWg6AxBisqTRGNR48wTHM4RIuEkbyJUnju9UAwmhgULhiceikdck5xdJ_p7cOnL8fB_dxx_-9MyPUJ2efjIf3lJWqsjFD4DWGfRds</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Bernot, Marc</creator><creator>Caselles, Vicent</creator><creator>Morel, Jean-Michel</creator><general>Universitat Autònoma de Barcelona</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050101</creationdate><title>TRAFFIC PLANS</title><author>Bernot, Marc ; Caselles, Vicent ; Morel, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-cc7b1ded09ad29702cfed9267ce38a3a30b2143be93c3eca8e42a1a7bc0f8ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Average linear density</topic><topic>Cost functions</topic><topic>Minimization of cost</topic><topic>Null set</topic><topic>Parameterization</topic><topic>Traffic</topic><topic>Transference</topic><topic>Transportation</topic><topic>Transportation costs</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernot, Marc</creatorcontrib><creatorcontrib>Caselles, Vicent</creatorcontrib><creatorcontrib>Morel, Jean-Michel</creatorcontrib><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernot, Marc</au><au>Caselles, Vicent</au><au>Morel, Jean-Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRAFFIC PLANS</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>49</volume><issue>2</issue><spage>417</spage><epage>451</epage><pages>417-451</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure μ⁺ onto a measure μ⁻ with the same mass. This approach is realistic for simple good distribution networks (water, electric power,...) but it is no more realistic when we want to specify "who goes where", like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approaches and permitting to solve the optimal transport problem under the "who goes where" constraint. This constraint is formalized as a transference plan from μ⁺ to μ⁻ which we handle as a boundary condition for the "optimal traffic problem".</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_49205_09</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0214-1493
ispartof Publicacions matemàtiques, 2005-01, Vol.49 (2), p.417-451
issn 0214-1493
2014-4350
language eng
recordid cdi_crossref_primary_10_5565_PUBLMAT_49205_09
source Revistes Catalanes amb Acces Obert (RACO); JSTOR Mathematics and Statistics; Alma/SFX Local Collection; JSTOR
subjects Average linear density
Cost functions
Minimization of cost
Null set
Parameterization
Traffic
Transference
Transportation
Transportation costs
Transportation networks
title TRAFFIC PLANS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRAFFIC%20PLANS&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Bernot,%20Marc&rft.date=2005-01-01&rft.volume=49&rft.issue=2&rft.spage=417&rft.epage=451&rft.pages=417-451&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_49205_09&rft_dat=%3Cjstor_cross%3E43736825%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736825&rfr_iscdi=true