Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation

In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Ts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of economics and finance 2023-01, Vol.15 (2), p.70
Hauptverfasser: Amman, H. M., Tucci, M. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 70
container_title International journal of economics and finance
container_volume 15
creator Amman, H. M.
Tucci, M. P.
description In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse & Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated.
doi_str_mv 10.5539/ijef.v15n2p70
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5539_ijef_v15n2p70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5539_ijef_v15n2p70</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_5539_ijef_v15n2p703</originalsourceid><addsrcrecordid>eNqVjk0PATEURRsh8bm0f39gaIcZZilCWAgRC7tmwiuV8dq0jeDXGwn2Vvcuzr05jHUF7yXJIOvrC6reTSQU2xGvsIbIRBplo3hc_XWxr7Om9xfO0zTJhg22nVjrzF1f86DpBDnBkpQmHRAWxumnIViZIxagCcIZYePQIx0QjIK1DeWugNndotNXpFCeGGqzmsoLj51Ptlg0n-2mi-jgjPcOlbQlnbuHFFy-xeVbXH7FB__yL03NTqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Amman, H. M. ; Tucci, M. P.</creator><creatorcontrib>Amman, H. M. ; Tucci, M. P.</creatorcontrib><description>In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse &amp; Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated.</description><identifier>ISSN: 1916-971X</identifier><identifier>EISSN: 1916-9728</identifier><identifier>DOI: 10.5539/ijef.v15n2p70</identifier><language>eng</language><ispartof>International journal of economics and finance, 2023-01, Vol.15 (2), p.70</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amman, H. M.</creatorcontrib><creatorcontrib>Tucci, M. P.</creatorcontrib><title>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</title><title>International journal of economics and finance</title><description>In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse &amp; Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated.</description><issn>1916-971X</issn><issn>1916-9728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVjk0PATEURRsh8bm0f39gaIcZZilCWAgRC7tmwiuV8dq0jeDXGwn2Vvcuzr05jHUF7yXJIOvrC6reTSQU2xGvsIbIRBplo3hc_XWxr7Om9xfO0zTJhg22nVjrzF1f86DpBDnBkpQmHRAWxumnIViZIxagCcIZYePQIx0QjIK1DeWugNndotNXpFCeGGqzmsoLj51Ptlg0n-2mi-jgjPcOlbQlnbuHFFy-xeVbXH7FB__yL03NTqo</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Amman, H. M.</creator><creator>Tucci, M. P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230131</creationdate><title>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</title><author>Amman, H. M. ; Tucci, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_5539_ijef_v15n2p703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Amman, H. M.</creatorcontrib><creatorcontrib>Tucci, M. P.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of economics and finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amman, H. M.</au><au>Tucci, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</atitle><jtitle>International journal of economics and finance</jtitle><date>2023-01-31</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>70</spage><pages>70-</pages><issn>1916-971X</issn><eissn>1916-9728</eissn><abstract>In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse &amp; Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated.</abstract><doi>10.5539/ijef.v15n2p70</doi></addata></record>
fulltext fulltext
identifier ISSN: 1916-971X
ispartof International journal of economics and finance, 2023-01, Vol.15 (2), p.70
issn 1916-971X
1916-9728
language eng
recordid cdi_crossref_primary_10_5539_ijef_v15n2p70
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals
title Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20an%20Infinite%20Horizon%20Model%20in%20the%20Presence%20of%20Optimal%20Experimentation&rft.jtitle=International%20journal%20of%20economics%20and%20finance&rft.au=Amman,%20H.%20M.&rft.date=2023-01-31&rft.volume=15&rft.issue=2&rft.spage=70&rft.pages=70-&rft.issn=1916-971X&rft.eissn=1916-9728&rft_id=info:doi/10.5539/ijef.v15n2p70&rft_dat=%3Ccrossref%3E10_5539_ijef_v15n2p70%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true