Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation
In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Ts...
Gespeichert in:
Veröffentlicht in: | International journal of economics and finance 2023-01, Vol.15 (2), p.70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 70 |
container_title | International journal of economics and finance |
container_volume | 15 |
creator | Amman, H. M. Tucci, M. P. |
description | In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse & Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated. |
doi_str_mv | 10.5539/ijef.v15n2p70 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5539_ijef_v15n2p70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5539_ijef_v15n2p70</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_5539_ijef_v15n2p703</originalsourceid><addsrcrecordid>eNqVjk0PATEURRsh8bm0f39gaIcZZilCWAgRC7tmwiuV8dq0jeDXGwn2Vvcuzr05jHUF7yXJIOvrC6reTSQU2xGvsIbIRBplo3hc_XWxr7Om9xfO0zTJhg22nVjrzF1f86DpBDnBkpQmHRAWxumnIViZIxagCcIZYePQIx0QjIK1DeWugNndotNXpFCeGGqzmsoLj51Ptlg0n-2mi-jgjPcOlbQlnbuHFFy-xeVbXH7FB__yL03NTqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Amman, H. M. ; Tucci, M. P.</creator><creatorcontrib>Amman, H. M. ; Tucci, M. P.</creatorcontrib><description>In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse & Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated.</description><identifier>ISSN: 1916-971X</identifier><identifier>EISSN: 1916-9728</identifier><identifier>DOI: 10.5539/ijef.v15n2p70</identifier><language>eng</language><ispartof>International journal of economics and finance, 2023-01, Vol.15 (2), p.70</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amman, H. M.</creatorcontrib><creatorcontrib>Tucci, M. P.</creatorcontrib><title>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</title><title>International journal of economics and finance</title><description>In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse & Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated.</description><issn>1916-971X</issn><issn>1916-9728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVjk0PATEURRsh8bm0f39gaIcZZilCWAgRC7tmwiuV8dq0jeDXGwn2Vvcuzr05jHUF7yXJIOvrC6reTSQU2xGvsIbIRBplo3hc_XWxr7Om9xfO0zTJhg22nVjrzF1f86DpBDnBkpQmHRAWxumnIViZIxagCcIZYePQIx0QjIK1DeWugNndotNXpFCeGGqzmsoLj51Ptlg0n-2mi-jgjPcOlbQlnbuHFFy-xeVbXH7FB__yL03NTqo</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Amman, H. M.</creator><creator>Tucci, M. P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230131</creationdate><title>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</title><author>Amman, H. M. ; Tucci, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_5539_ijef_v15n2p703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Amman, H. M.</creatorcontrib><creatorcontrib>Tucci, M. P.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of economics and finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amman, H. M.</au><au>Tucci, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation</atitle><jtitle>International journal of economics and finance</jtitle><date>2023-01-31</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>70</spage><pages>70-</pages><issn>1916-971X</issn><eissn>1916-9728</eissn><abstract>In an recent article Amman and Tucci (2020) make a comparison of the two dominant approaches for solving models with optimal experimentation in economics; the value function approach and an approximation approach. The approximation approach goes back to engineering literature in the 1970ties (cf. Tse & Bar-Shalom, 1973). Kendrick (1981) introduces this approach in economics. By using the same model and dataset as in Beck and Wieland (2002), Amman and Tucci conclude that differences may be small between the both approaches. In the previous paper we did not present the derivation of the approximation approach for this class of models. Hence, here we will present all derivations of the approximation approach for the case where there is an infinite horizon as is most common in economic models. By presenting the derivations, a better understanding and insight is obtained by the reader on how the value function is adequately approximated.</abstract><doi>10.5539/ijef.v15n2p70</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1916-971X |
ispartof | International journal of economics and finance, 2023-01, Vol.15 (2), p.70 |
issn | 1916-971X 1916-9728 |
language | eng |
recordid | cdi_crossref_primary_10_5539_ijef_v15n2p70 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals |
title | Approximating an Infinite Horizon Model in the Presence of Optimal Experimentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20an%20Infinite%20Horizon%20Model%20in%20the%20Presence%20of%20Optimal%20Experimentation&rft.jtitle=International%20journal%20of%20economics%20and%20finance&rft.au=Amman,%20H.%20M.&rft.date=2023-01-31&rft.volume=15&rft.issue=2&rft.spage=70&rft.pages=70-&rft.issn=1916-971X&rft.eissn=1916-9728&rft_id=info:doi/10.5539/ijef.v15n2p70&rft_dat=%3Ccrossref%3E10_5539_ijef_v15n2p70%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |