Enhancing Big Data Auditing
The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the cor...
Gespeichert in:
Veröffentlicht in: | Computer and information science (Toronto) 2018-01, Vol.11 (1), p.90 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | Computer and information science (Toronto) |
container_volume | 11 |
creator | Alomari, Sara Alghamdi, Mona Alotaibi, Fahd S. |
description | The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing. |
doi_str_mv | 10.5539/cis.v11n1p90 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5539_cis_v11n1p90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5539_cis_v11n1p90</sourcerecordid><originalsourceid>FETCH-LOGICAL-c800-2d12c3f1e05bcbd37f176b6414e6c86a8ca173f5e81584c8ebc7f62014c5d0ba3</originalsourceid><addsrcrecordid>eNo9j81KAzEURoMoWKs7d27mAZx672SS3CxrrVoodNN9SO4kNaJjmVTBt3fEn9V3-BYHjhCXCDOlpL3hXGYfiD3uLRyJCVqUNVlrjv-Z7Kk4K-UZQOsWaSKulv2T7zn3u-o276o7f_DV_L3Lh_E5FyfJv5R48btTsb1fbheP9XrzsFrM1zUTQN102LBMGEEFDp00CY0Oo72Nmkl7Yo9GJhUJFbVMMbBJugFsWXUQvJyK6x8tD2-lDDG5_ZBf_fDpENx3lxu73F-X_AIOg0Bn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Big Data Auditing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alomari, Sara ; Alghamdi, Mona ; Alotaibi, Fahd S.</creator><creatorcontrib>Alomari, Sara ; Alghamdi, Mona ; Alotaibi, Fahd S.</creatorcontrib><description>The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.</description><identifier>ISSN: 1913-8989</identifier><identifier>EISSN: 1913-8997</identifier><identifier>DOI: 10.5539/cis.v11n1p90</identifier><language>eng</language><ispartof>Computer and information science (Toronto), 2018-01, Vol.11 (1), p.90</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c800-2d12c3f1e05bcbd37f176b6414e6c86a8ca173f5e81584c8ebc7f62014c5d0ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Alomari, Sara</creatorcontrib><creatorcontrib>Alghamdi, Mona</creatorcontrib><creatorcontrib>Alotaibi, Fahd S.</creatorcontrib><title>Enhancing Big Data Auditing</title><title>Computer and information science (Toronto)</title><description>The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.</description><issn>1913-8989</issn><issn>1913-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEURoMoWKs7d27mAZx672SS3CxrrVoodNN9SO4kNaJjmVTBt3fEn9V3-BYHjhCXCDOlpL3hXGYfiD3uLRyJCVqUNVlrjv-Z7Kk4K-UZQOsWaSKulv2T7zn3u-o276o7f_DV_L3Lh_E5FyfJv5R48btTsb1fbheP9XrzsFrM1zUTQN102LBMGEEFDp00CY0Oo72Nmkl7Yo9GJhUJFbVMMbBJugFsWXUQvJyK6x8tD2-lDDG5_ZBf_fDpENx3lxu73F-X_AIOg0Bn</recordid><startdate>20180127</startdate><enddate>20180127</enddate><creator>Alomari, Sara</creator><creator>Alghamdi, Mona</creator><creator>Alotaibi, Fahd S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180127</creationdate><title>Enhancing Big Data Auditing</title><author>Alomari, Sara ; Alghamdi, Mona ; Alotaibi, Fahd S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c800-2d12c3f1e05bcbd37f176b6414e6c86a8ca173f5e81584c8ebc7f62014c5d0ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Alomari, Sara</creatorcontrib><creatorcontrib>Alghamdi, Mona</creatorcontrib><creatorcontrib>Alotaibi, Fahd S.</creatorcontrib><collection>CrossRef</collection><jtitle>Computer and information science (Toronto)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alomari, Sara</au><au>Alghamdi, Mona</au><au>Alotaibi, Fahd S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Big Data Auditing</atitle><jtitle>Computer and information science (Toronto)</jtitle><date>2018-01-27</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>90</spage><pages>90-</pages><issn>1913-8989</issn><eissn>1913-8997</eissn><abstract>The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.</abstract><doi>10.5539/cis.v11n1p90</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1913-8989 |
ispartof | Computer and information science (Toronto), 2018-01, Vol.11 (1), p.90 |
issn | 1913-8989 1913-8997 |
language | eng |
recordid | cdi_crossref_primary_10_5539_cis_v11n1p90 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Enhancing Big Data Auditing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Big%20Data%20Auditing&rft.jtitle=Computer%20and%20information%20science%20(Toronto)&rft.au=Alomari,%20Sara&rft.date=2018-01-27&rft.volume=11&rft.issue=1&rft.spage=90&rft.pages=90-&rft.issn=1913-8989&rft.eissn=1913-8997&rft_id=info:doi/10.5539/cis.v11n1p90&rft_dat=%3Ccrossref%3E10_5539_cis_v11n1p90%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |