Enhancing Big Data Auditing

The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer and information science (Toronto) 2018-01, Vol.11 (1), p.90
Hauptverfasser: Alomari, Sara, Alghamdi, Mona, Alotaibi, Fahd S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 90
container_title Computer and information science (Toronto)
container_volume 11
creator Alomari, Sara
Alghamdi, Mona
Alotaibi, Fahd S.
description The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.
doi_str_mv 10.5539/cis.v11n1p90
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5539_cis_v11n1p90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5539_cis_v11n1p90</sourcerecordid><originalsourceid>FETCH-LOGICAL-c800-2d12c3f1e05bcbd37f176b6414e6c86a8ca173f5e81584c8ebc7f62014c5d0ba3</originalsourceid><addsrcrecordid>eNo9j81KAzEURoMoWKs7d27mAZx672SS3CxrrVoodNN9SO4kNaJjmVTBt3fEn9V3-BYHjhCXCDOlpL3hXGYfiD3uLRyJCVqUNVlrjv-Z7Kk4K-UZQOsWaSKulv2T7zn3u-o276o7f_DV_L3Lh_E5FyfJv5R48btTsb1fbheP9XrzsFrM1zUTQN102LBMGEEFDp00CY0Oo72Nmkl7Yo9GJhUJFbVMMbBJugFsWXUQvJyK6x8tD2-lDDG5_ZBf_fDpENx3lxu73F-X_AIOg0Bn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Big Data Auditing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alomari, Sara ; Alghamdi, Mona ; Alotaibi, Fahd S.</creator><creatorcontrib>Alomari, Sara ; Alghamdi, Mona ; Alotaibi, Fahd S.</creatorcontrib><description>The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.</description><identifier>ISSN: 1913-8989</identifier><identifier>EISSN: 1913-8997</identifier><identifier>DOI: 10.5539/cis.v11n1p90</identifier><language>eng</language><ispartof>Computer and information science (Toronto), 2018-01, Vol.11 (1), p.90</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c800-2d12c3f1e05bcbd37f176b6414e6c86a8ca173f5e81584c8ebc7f62014c5d0ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Alomari, Sara</creatorcontrib><creatorcontrib>Alghamdi, Mona</creatorcontrib><creatorcontrib>Alotaibi, Fahd S.</creatorcontrib><title>Enhancing Big Data Auditing</title><title>Computer and information science (Toronto)</title><description>The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.</description><issn>1913-8989</issn><issn>1913-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEURoMoWKs7d27mAZx672SS3CxrrVoodNN9SO4kNaJjmVTBt3fEn9V3-BYHjhCXCDOlpL3hXGYfiD3uLRyJCVqUNVlrjv-Z7Kk4K-UZQOsWaSKulv2T7zn3u-o276o7f_DV_L3Lh_E5FyfJv5R48btTsb1fbheP9XrzsFrM1zUTQN102LBMGEEFDp00CY0Oo72Nmkl7Yo9GJhUJFbVMMbBJugFsWXUQvJyK6x8tD2-lDDG5_ZBf_fDpENx3lxu73F-X_AIOg0Bn</recordid><startdate>20180127</startdate><enddate>20180127</enddate><creator>Alomari, Sara</creator><creator>Alghamdi, Mona</creator><creator>Alotaibi, Fahd S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180127</creationdate><title>Enhancing Big Data Auditing</title><author>Alomari, Sara ; Alghamdi, Mona ; Alotaibi, Fahd S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c800-2d12c3f1e05bcbd37f176b6414e6c86a8ca173f5e81584c8ebc7f62014c5d0ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Alomari, Sara</creatorcontrib><creatorcontrib>Alghamdi, Mona</creatorcontrib><creatorcontrib>Alotaibi, Fahd S.</creatorcontrib><collection>CrossRef</collection><jtitle>Computer and information science (Toronto)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alomari, Sara</au><au>Alghamdi, Mona</au><au>Alotaibi, Fahd S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Big Data Auditing</atitle><jtitle>Computer and information science (Toronto)</jtitle><date>2018-01-27</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>90</spage><pages>90-</pages><issn>1913-8989</issn><eissn>1913-8997</eissn><abstract>The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.</abstract><doi>10.5539/cis.v11n1p90</doi></addata></record>
fulltext fulltext
identifier ISSN: 1913-8989
ispartof Computer and information science (Toronto), 2018-01, Vol.11 (1), p.90
issn 1913-8989
1913-8997
language eng
recordid cdi_crossref_primary_10_5539_cis_v11n1p90
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Enhancing Big Data Auditing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Big%20Data%20Auditing&rft.jtitle=Computer%20and%20information%20science%20(Toronto)&rft.au=Alomari,%20Sara&rft.date=2018-01-27&rft.volume=11&rft.issue=1&rft.spage=90&rft.pages=90-&rft.issn=1913-8989&rft.eissn=1913-8997&rft_id=info:doi/10.5539/cis.v11n1p90&rft_dat=%3Ccrossref%3E10_5539_cis_v11n1p90%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true