Imaging n-Dimensional Spaces Within m-Dimensional Spaces: An Extension of Hinton’s Method
We derive a Euclidean manifold that is virtually cyclic using a simple equation based on a Euclidean geometry and related to Hinton's method. The derived equation is simple to understand, but able to project n-dimensional spaces into m-dimensional spaces. In addition, the method produces exact...
Gespeichert in:
Veröffentlicht in: | Applied physics research 2024-04, Vol.16 (1), p.209 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 209 |
container_title | Applied physics research |
container_volume | 16 |
creator | Houston, Louis M. |
description | We derive a Euclidean manifold that is virtually cyclic using a simple equation based on a Euclidean geometry and related to Hinton's method. The derived equation is simple to understand, but able to project n-dimensional spaces into m-dimensional spaces. In addition, the method produces exact images of rectangular cuboids as elements of a vector space, implying that information is a vector and not a scalar. |
doi_str_mv | 10.5539/apr.v16n1p209 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5539_apr_v16n1p209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5539_apr_v16n1p209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c779-65ff93630777cb1a7286a32af48d444dc7641ee212d553f95c827ef3a60804bf3</originalsourceid><addsrcrecordid>eNptkM1KAzEAhIMoWKtH73mB1PxtfryVWttCxYMFDx5Cmk3aSDe7JIvozdfw9XwSK5WePM0wAwPzAXBN8KiqmL6xXR69EZFIR7E-AQOiiUBacHl69Eyfg4tSXjEWgik-AC-Lxm5i2sCE7mLjU4ltsjv41FnnC3yO_TYm2PzT3cJxgtP3_hDDNsB5TH2bvj-_Cnzw_batL8FZsLvir_50CFb309VkjpaPs8VkvEROSo1EFYJmgmEppVsTK6kSllEbuKo557WTghPvKaH1_mXQlVNU-sCswArzdWBDgA6zLrelZB9Ml2Nj84ch2PyCMXsw5giG_QBmhFiq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Imaging n-Dimensional Spaces Within m-Dimensional Spaces: An Extension of Hinton’s Method</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Houston, Louis M.</creator><creatorcontrib>Houston, Louis M.</creatorcontrib><description>We derive a Euclidean manifold that is virtually cyclic using a simple equation based on a Euclidean geometry and related to Hinton's method. The derived equation is simple to understand, but able to project n-dimensional spaces into m-dimensional spaces. In addition, the method produces exact images of rectangular cuboids as elements of a vector space, implying that information is a vector and not a scalar.</description><identifier>ISSN: 1916-9639</identifier><identifier>EISSN: 1916-9647</identifier><identifier>DOI: 10.5539/apr.v16n1p209</identifier><language>eng</language><ispartof>Applied physics research, 2024-04, Vol.16 (1), p.209</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Houston, Louis M.</creatorcontrib><title>Imaging n-Dimensional Spaces Within m-Dimensional Spaces: An Extension of Hinton’s Method</title><title>Applied physics research</title><description>We derive a Euclidean manifold that is virtually cyclic using a simple equation based on a Euclidean geometry and related to Hinton's method. The derived equation is simple to understand, but able to project n-dimensional spaces into m-dimensional spaces. In addition, the method produces exact images of rectangular cuboids as elements of a vector space, implying that information is a vector and not a scalar.</description><issn>1916-9639</issn><issn>1916-9647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEAhIMoWKtH73mB1PxtfryVWttCxYMFDx5Cmk3aSDe7JIvozdfw9XwSK5WePM0wAwPzAXBN8KiqmL6xXR69EZFIR7E-AQOiiUBacHl69Eyfg4tSXjEWgik-AC-Lxm5i2sCE7mLjU4ltsjv41FnnC3yO_TYm2PzT3cJxgtP3_hDDNsB5TH2bvj-_Cnzw_batL8FZsLvir_50CFb309VkjpaPs8VkvEROSo1EFYJmgmEppVsTK6kSllEbuKo557WTghPvKaH1_mXQlVNU-sCswArzdWBDgA6zLrelZB9Ml2Nj84ch2PyCMXsw5giG_QBmhFiq</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Houston, Louis M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240424</creationdate><title>Imaging n-Dimensional Spaces Within m-Dimensional Spaces: An Extension of Hinton’s Method</title><author>Houston, Louis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c779-65ff93630777cb1a7286a32af48d444dc7641ee212d553f95c827ef3a60804bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houston, Louis M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houston, Louis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging n-Dimensional Spaces Within m-Dimensional Spaces: An Extension of Hinton’s Method</atitle><jtitle>Applied physics research</jtitle><date>2024-04-24</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>209</spage><pages>209-</pages><issn>1916-9639</issn><eissn>1916-9647</eissn><abstract>We derive a Euclidean manifold that is virtually cyclic using a simple equation based on a Euclidean geometry and related to Hinton's method. The derived equation is simple to understand, but able to project n-dimensional spaces into m-dimensional spaces. In addition, the method produces exact images of rectangular cuboids as elements of a vector space, implying that information is a vector and not a scalar.</abstract><doi>10.5539/apr.v16n1p209</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1916-9639 |
ispartof | Applied physics research, 2024-04, Vol.16 (1), p.209 |
issn | 1916-9639 1916-9647 |
language | eng |
recordid | cdi_crossref_primary_10_5539_apr_v16n1p209 |
source | EZB-FREE-00999 freely available EZB journals |
title | Imaging n-Dimensional Spaces Within m-Dimensional Spaces: An Extension of Hinton’s Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20n-Dimensional%20Spaces%20Within%20m-Dimensional%20Spaces:%20An%20Extension%20of%20Hinton%E2%80%99s%20Method&rft.jtitle=Applied%20physics%20research&rft.au=Houston,%20Louis%20M.&rft.date=2024-04-24&rft.volume=16&rft.issue=1&rft.spage=209&rft.pages=209-&rft.issn=1916-9639&rft.eissn=1916-9647&rft_id=info:doi/10.5539/apr.v16n1p209&rft_dat=%3Ccrossref%3E10_5539_apr_v16n1p209%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |