Pell Leonardo numbers and their matrix representations

In this study, we investigate Pell numbers and Leonardo numbers and describe a new third-order number sequence entitled Pell Leonardo numbers. We then construct some identities, including the Binet formula, generating function, exponential generating function, Catalan, Cassini, and d’Ocagne’s identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of new results in science 2024-08, Vol.13 (2), p.101-108
1. Verfasser: Çelemoğlu, Çağla
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 2
container_start_page 101
container_title Journal of new results in science
container_volume 13
creator Çelemoğlu, Çağla
description In this study, we investigate Pell numbers and Leonardo numbers and describe a new third-order number sequence entitled Pell Leonardo numbers. We then construct some identities, including the Binet formula, generating function, exponential generating function, Catalan, Cassini, and d’Ocagne’s identities for Pell Leonardo numbers and obtain a relation between Pell Leonardo and Pell numbers. In addition, we present some summation formulas of Pell Leonardo numbers based on Pell numbers. Finally, we create a matrix formula for Pell Leonardo numbers and obtain the determinant of the matrix.
doi_str_mv 10.54187/jnrs.1506171
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_54187_jnrs_1506171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_54187_jnrs_1506171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c771-1ebcee0bf5709dc1ab60efc902f8b47683f6f4eb6b953de789340ae4210efe453</originalsourceid><addsrcrecordid>eNpNz0trwzAQBGBRGmhIc-xdf8DpbiRL1rGEvsCQHnI3kr0iDrYcVi60_76vHHqaOQwDnxB3CJtSY2XvT4nzBkswaPFKLFGBLqyr8PpfvxHrnE8AoBRY68xSmDcaBlnTlDx3k0zvYyDO0qdOzkfqWY5-5v5DMp2ZMqXZz_2U8q1YRD9kWl9yJQ5Pj4fdS1Hvn193D3XRWosFUmiJIMTSguta9MEAxdbBNlZBW1OpaKKmYIIrVUe2ckqDJ73F7xnpUq1E8Xfb8pQzU2zO3I-ePxuE5pfd_LCbC1t9AW9hTCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pell Leonardo numbers and their matrix representations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Çelemoğlu, Çağla</creator><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><description>In this study, we investigate Pell numbers and Leonardo numbers and describe a new third-order number sequence entitled Pell Leonardo numbers. We then construct some identities, including the Binet formula, generating function, exponential generating function, Catalan, Cassini, and d’Ocagne’s identities for Pell Leonardo numbers and obtain a relation between Pell Leonardo and Pell numbers. In addition, we present some summation formulas of Pell Leonardo numbers based on Pell numbers. Finally, we create a matrix formula for Pell Leonardo numbers and obtain the determinant of the matrix.</description><identifier>ISSN: 1304-7981</identifier><identifier>EISSN: 1304-7981</identifier><identifier>DOI: 10.54187/jnrs.1506171</identifier><language>eng</language><ispartof>Journal of new results in science, 2024-08, Vol.13 (2), p.101-108</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c771-1ebcee0bf5709dc1ab60efc902f8b47683f6f4eb6b953de789340ae4210efe453</cites><orcidid>0000-0003-0572-8132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><title>Pell Leonardo numbers and their matrix representations</title><title>Journal of new results in science</title><description>In this study, we investigate Pell numbers and Leonardo numbers and describe a new third-order number sequence entitled Pell Leonardo numbers. We then construct some identities, including the Binet formula, generating function, exponential generating function, Catalan, Cassini, and d’Ocagne’s identities for Pell Leonardo numbers and obtain a relation between Pell Leonardo and Pell numbers. In addition, we present some summation formulas of Pell Leonardo numbers based on Pell numbers. Finally, we create a matrix formula for Pell Leonardo numbers and obtain the determinant of the matrix.</description><issn>1304-7981</issn><issn>1304-7981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNz0trwzAQBGBRGmhIc-xdf8DpbiRL1rGEvsCQHnI3kr0iDrYcVi60_76vHHqaOQwDnxB3CJtSY2XvT4nzBkswaPFKLFGBLqyr8PpfvxHrnE8AoBRY68xSmDcaBlnTlDx3k0zvYyDO0qdOzkfqWY5-5v5DMp2ZMqXZz_2U8q1YRD9kWl9yJQ5Pj4fdS1Hvn193D3XRWosFUmiJIMTSguta9MEAxdbBNlZBW1OpaKKmYIIrVUe2ckqDJ73F7xnpUq1E8Xfb8pQzU2zO3I-ePxuE5pfd_LCbC1t9AW9hTCg</recordid><startdate>20240831</startdate><enddate>20240831</enddate><creator>Çelemoğlu, Çağla</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0572-8132</orcidid></search><sort><creationdate>20240831</creationdate><title>Pell Leonardo numbers and their matrix representations</title><author>Çelemoğlu, Çağla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c771-1ebcee0bf5709dc1ab60efc902f8b47683f6f4eb6b953de789340ae4210efe453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of new results in science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çelemoğlu, Çağla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pell Leonardo numbers and their matrix representations</atitle><jtitle>Journal of new results in science</jtitle><date>2024-08-31</date><risdate>2024</risdate><volume>13</volume><issue>2</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>1304-7981</issn><eissn>1304-7981</eissn><abstract>In this study, we investigate Pell numbers and Leonardo numbers and describe a new third-order number sequence entitled Pell Leonardo numbers. We then construct some identities, including the Binet formula, generating function, exponential generating function, Catalan, Cassini, and d’Ocagne’s identities for Pell Leonardo numbers and obtain a relation between Pell Leonardo and Pell numbers. In addition, we present some summation formulas of Pell Leonardo numbers based on Pell numbers. Finally, we create a matrix formula for Pell Leonardo numbers and obtain the determinant of the matrix.</abstract><doi>10.54187/jnrs.1506171</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0572-8132</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1304-7981
ispartof Journal of new results in science, 2024-08, Vol.13 (2), p.101-108
issn 1304-7981
1304-7981
language eng
recordid cdi_crossref_primary_10_54187_jnrs_1506171
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Pell Leonardo numbers and their matrix representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pell%20Leonardo%20numbers%20and%20their%20matrix%20representations&rft.jtitle=Journal%20of%20new%20results%20in%20science&rft.au=%C3%87elemo%C4%9Flu,%20%C3%87a%C4%9Fla&rft.date=2024-08-31&rft.volume=13&rft.issue=2&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=1304-7981&rft.eissn=1304-7981&rft_id=info:doi/10.54187/jnrs.1506171&rft_dat=%3Ccrossref%3E10_54187_jnrs_1506171%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true