SEIR Epidemic Dynamics in Random Networks
Predicting disease transmission on complex networks has attracted considerable recent attention in the epidemiology community. In this paper, we develop a low-dimensional system of nonlinear ordinary differential equations to model the susceptible-exposed-infectious-recovered (SEIR) epidemics on ran...
Gespeichert in:
Veröffentlicht in: | ISRN Epidemiology 2013-02, Vol.2013, p.1-5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | ISRN Epidemiology |
container_volume | 2013 |
creator | Shang, Yilun |
description | Predicting disease transmission on complex networks has attracted considerable recent attention in the epidemiology community. In this paper, we develop a low-dimensional system of nonlinear ordinary differential equations to model the susceptible-exposed-infectious-recovered (SEIR) epidemics on random network with arbitrary degree distributions. Both the final size of epidemics and the time-dependent behaviors are derived within our simple framework. The underlying network is represented by the configuration model, which appropriately accounts for the heterogeneity and finiteness of the degree observed in a variety of real contact networks. Moreover, a generalized model where the infectious state of individual can be skipped is treated in brief. |
doi_str_mv | 10.5402/2013/345618 |
format | Article |
fullrecord | <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_5402_2013_345618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5402_2013_345618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1508-cb75b228e19c5839bd74b481d1e65978b88c649dd58af842481f1845b79323693</originalsourceid><addsrcrecordid>eNp9j0tLw0AUhQepYKld-QdmqxI7z-TOUmrUQlGoCu6GeQVHTVJmCqX_3pS4cOXdnAvn48CH0AUlN1IQtmCE8gUXsqRwgqaMKFIowd4nf_4zNM_5kwynFPCKT9HlS73a4HobfWijw3eHzgyZcezwxnS-b_FT2O379JXP0WljvnOY_-YMvd3Xr8vHYv38sFrergtHJYHC2UpaxiBQ5SRwZX0lrADqaSilqsACuFIo7yWYBgQbqoaCkLZSnPFS8Rm6Hndd6nNOodHbFFuTDpoSfRTVR1E9ig701Uh_xM6bffwX_gEGzE8D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SEIR Epidemic Dynamics in Random Networks</title><source>EZB Electronic Journals Library</source><creator>Shang, Yilun</creator><contributor>Finckh, A. ; Zhao, R. ; Lancellotti, M.</contributor><creatorcontrib>Shang, Yilun ; Finckh, A. ; Zhao, R. ; Lancellotti, M.</creatorcontrib><description>Predicting disease transmission on complex networks has attracted considerable recent attention in the epidemiology community. In this paper, we develop a low-dimensional system of nonlinear ordinary differential equations to model the susceptible-exposed-infectious-recovered (SEIR) epidemics on random network with arbitrary degree distributions. Both the final size of epidemics and the time-dependent behaviors are derived within our simple framework. The underlying network is represented by the configuration model, which appropriately accounts for the heterogeneity and finiteness of the degree observed in a variety of real contact networks. Moreover, a generalized model where the infectious state of individual can be skipped is treated in brief.</description><identifier>ISSN: 2090-942X</identifier><identifier>EISSN: 2090-942X</identifier><identifier>DOI: 10.5402/2013/345618</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>ISRN Epidemiology, 2013-02, Vol.2013, p.1-5</ispartof><rights>Copyright © 2013 Yilun Shang.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1508-cb75b228e19c5839bd74b481d1e65978b88c649dd58af842481f1845b79323693</citedby><cites>FETCH-LOGICAL-c1508-cb75b228e19c5839bd74b481d1e65978b88c649dd58af842481f1845b79323693</cites><orcidid>0000-0002-2817-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><contributor>Finckh, A.</contributor><contributor>Zhao, R.</contributor><contributor>Lancellotti, M.</contributor><creatorcontrib>Shang, Yilun</creatorcontrib><title>SEIR Epidemic Dynamics in Random Networks</title><title>ISRN Epidemiology</title><description>Predicting disease transmission on complex networks has attracted considerable recent attention in the epidemiology community. In this paper, we develop a low-dimensional system of nonlinear ordinary differential equations to model the susceptible-exposed-infectious-recovered (SEIR) epidemics on random network with arbitrary degree distributions. Both the final size of epidemics and the time-dependent behaviors are derived within our simple framework. The underlying network is represented by the configuration model, which appropriately accounts for the heterogeneity and finiteness of the degree observed in a variety of real contact networks. Moreover, a generalized model where the infectious state of individual can be skipped is treated in brief.</description><issn>2090-942X</issn><issn>2090-942X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9j0tLw0AUhQepYKld-QdmqxI7z-TOUmrUQlGoCu6GeQVHTVJmCqX_3pS4cOXdnAvn48CH0AUlN1IQtmCE8gUXsqRwgqaMKFIowd4nf_4zNM_5kwynFPCKT9HlS73a4HobfWijw3eHzgyZcezwxnS-b_FT2O379JXP0WljvnOY_-YMvd3Xr8vHYv38sFrergtHJYHC2UpaxiBQ5SRwZX0lrADqaSilqsACuFIo7yWYBgQbqoaCkLZSnPFS8Rm6Hndd6nNOodHbFFuTDpoSfRTVR1E9ig701Uh_xM6bffwX_gEGzE8D</recordid><startdate>20130212</startdate><enddate>20130212</enddate><creator>Shang, Yilun</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2817-3400</orcidid></search><sort><creationdate>20130212</creationdate><title>SEIR Epidemic Dynamics in Random Networks</title><author>Shang, Yilun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1508-cb75b228e19c5839bd74b481d1e65978b88c649dd58af842481f1845b79323693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Yilun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>ISRN Epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Yilun</au><au>Finckh, A.</au><au>Zhao, R.</au><au>Lancellotti, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEIR Epidemic Dynamics in Random Networks</atitle><jtitle>ISRN Epidemiology</jtitle><date>2013-02-12</date><risdate>2013</risdate><volume>2013</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2090-942X</issn><eissn>2090-942X</eissn><abstract>Predicting disease transmission on complex networks has attracted considerable recent attention in the epidemiology community. In this paper, we develop a low-dimensional system of nonlinear ordinary differential equations to model the susceptible-exposed-infectious-recovered (SEIR) epidemics on random network with arbitrary degree distributions. Both the final size of epidemics and the time-dependent behaviors are derived within our simple framework. The underlying network is represented by the configuration model, which appropriately accounts for the heterogeneity and finiteness of the degree observed in a variety of real contact networks. Moreover, a generalized model where the infectious state of individual can be skipped is treated in brief.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.5402/2013/345618</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2817-3400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-942X |
ispartof | ISRN Epidemiology, 2013-02, Vol.2013, p.1-5 |
issn | 2090-942X 2090-942X |
language | eng |
recordid | cdi_crossref_primary_10_5402_2013_345618 |
source | EZB Electronic Journals Library |
title | SEIR Epidemic Dynamics in Random Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEIR%20Epidemic%20Dynamics%20in%20Random%20Networks&rft.jtitle=ISRN%20Epidemiology&rft.au=Shang,%20Yilun&rft.date=2013-02-12&rft.volume=2013&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2090-942X&rft.eissn=2090-942X&rft_id=info:doi/10.5402/2013/345618&rft_dat=%3Ccrossref_hinda%3E10_5402_2013_345618%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |