Limiting Solar Cell Heat-Up by Quantizing High Energy Carriers
Under solar radiation the efficiency of solar cells decreases as a result of heating up by short wavelengths photons. To minimize loss of efficiency with increasing temperatures, we designed a heterostructure AlGaAs/AlGaAs/GaAs cascaded p-i-n solar cells with 30 Å wide quantum wells and 10 Å wide ba...
Gespeichert in:
Veröffentlicht in: | ISRN renewable energy 2012-07, Vol.2012 (2012), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 2012 |
container_start_page | 1 |
container_title | ISRN renewable energy |
container_volume | 2012 |
creator | Devarakonda, L. Mil'shtein, S. |
description | Under solar radiation the efficiency of solar cells decreases as a result of heating up by short wavelengths photons. To minimize loss of efficiency with increasing temperatures, we designed a heterostructure AlGaAs/AlGaAs/GaAs cascaded p-i-n solar cells with 30 Å wide quantum wells and 10 Å wide barriers in p and i regions. Our modeling demonstrated that quantizing high energy carriers in the superlattice prevents scattering of excessive electron energies, thus decreasing the temperature rise per unit of time by a factor of 2. The modeling based on continuity equations included integration of absorption coefficients for various wavelengths and summarizes all thermodynamic heat exchanges in the designed solar cell. |
doi_str_mv | 10.5402/2012/862790 |
format | Article |
fullrecord | <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5402_2012_862790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>504314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1720-58fda00333c5156b091488f0640a92238043ecc0fb2d96cee2e5ca377895ae0f3</originalsourceid><addsrcrecordid>eNqFz89LwzAUB_AgCo65k2chZ6XuJWn64yJI2axQENGBt5KmL12k60YykfrX21LZ1Xd57_Dhy_sScs3gXobAlxwYXyYRj1M4IzMOKQRxGH2cn27JLsnC-08YZmCSxzPyUNidPdquoW_7VjmaYdvSHNUx2Bxo1dPXL9Ud7c8Ictts6apD1_Q0U85ZdP6KXBjVelz87TnZrFfvWR4UL0_P2WMRaBZzCGRiagUghNCSyaiClIVJYiAKQaWciwRCgVqDqXidRhqRo9RKxHGSSoVgxJzcTbna7b13aMqDszvl-pJBObYvx_bl1H7Qt5Pe2q5W3_YffDNhHAgadcJyeIqF4hfRV2DK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Limiting Solar Cell Heat-Up by Quantizing High Energy Carriers</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Devarakonda, L. ; Mil'shtein, S.</creator><contributor>Fasina, O. O. ; Zoulias, M.</contributor><creatorcontrib>Devarakonda, L. ; Mil'shtein, S. ; Fasina, O. O. ; Zoulias, M.</creatorcontrib><description>Under solar radiation the efficiency of solar cells decreases as a result of heating up by short wavelengths photons. To minimize loss of efficiency with increasing temperatures, we designed a heterostructure AlGaAs/AlGaAs/GaAs cascaded p-i-n solar cells with 30 Å wide quantum wells and 10 Å wide barriers in p and i regions. Our modeling demonstrated that quantizing high energy carriers in the superlattice prevents scattering of excessive electron energies, thus decreasing the temperature rise per unit of time by a factor of 2. The modeling based on continuity equations included integration of absorption coefficients for various wavelengths and summarizes all thermodynamic heat exchanges in the designed solar cell.</description><identifier>ISSN: 2090-7451</identifier><identifier>ISSN: 2090-746X</identifier><identifier>EISSN: 2090-746X</identifier><identifier>DOI: 10.5402/2012/862790</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>ISRN renewable energy, 2012-07, Vol.2012 (2012), p.1-5</ispartof><rights>Copyright © 2012 L. Devarakonda and S. Mil'shtein.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1720-58fda00333c5156b091488f0640a92238043ecc0fb2d96cee2e5ca377895ae0f3</citedby><cites>FETCH-LOGICAL-c1720-58fda00333c5156b091488f0640a92238043ecc0fb2d96cee2e5ca377895ae0f3</cites><orcidid>0000-0002-5866-6089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Fasina, O. O.</contributor><contributor>Zoulias, M.</contributor><creatorcontrib>Devarakonda, L.</creatorcontrib><creatorcontrib>Mil'shtein, S.</creatorcontrib><title>Limiting Solar Cell Heat-Up by Quantizing High Energy Carriers</title><title>ISRN renewable energy</title><description>Under solar radiation the efficiency of solar cells decreases as a result of heating up by short wavelengths photons. To minimize loss of efficiency with increasing temperatures, we designed a heterostructure AlGaAs/AlGaAs/GaAs cascaded p-i-n solar cells with 30 Å wide quantum wells and 10 Å wide barriers in p and i regions. Our modeling demonstrated that quantizing high energy carriers in the superlattice prevents scattering of excessive electron energies, thus decreasing the temperature rise per unit of time by a factor of 2. The modeling based on continuity equations included integration of absorption coefficients for various wavelengths and summarizes all thermodynamic heat exchanges in the designed solar cell.</description><issn>2090-7451</issn><issn>2090-746X</issn><issn>2090-746X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFz89LwzAUB_AgCo65k2chZ6XuJWn64yJI2axQENGBt5KmL12k60YykfrX21LZ1Xd57_Dhy_sScs3gXobAlxwYXyYRj1M4IzMOKQRxGH2cn27JLsnC-08YZmCSxzPyUNidPdquoW_7VjmaYdvSHNUx2Bxo1dPXL9Ud7c8Ictts6apD1_Q0U85ZdP6KXBjVelz87TnZrFfvWR4UL0_P2WMRaBZzCGRiagUghNCSyaiClIVJYiAKQaWciwRCgVqDqXidRhqRo9RKxHGSSoVgxJzcTbna7b13aMqDszvl-pJBObYvx_bl1H7Qt5Pe2q5W3_YffDNhHAgadcJyeIqF4hfRV2DK</recordid><startdate>20120725</startdate><enddate>20120725</enddate><creator>Devarakonda, L.</creator><creator>Mil'shtein, S.</creator><general>Hindawi Puplishing Corporation</general><general>International Scholarly Research Network</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5866-6089</orcidid></search><sort><creationdate>20120725</creationdate><title>Limiting Solar Cell Heat-Up by Quantizing High Energy Carriers</title><author>Devarakonda, L. ; Mil'shtein, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1720-58fda00333c5156b091488f0640a92238043ecc0fb2d96cee2e5ca377895ae0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devarakonda, L.</creatorcontrib><creatorcontrib>Mil'shtein, S.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>ISRN renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devarakonda, L.</au><au>Mil'shtein, S.</au><au>Fasina, O. O.</au><au>Zoulias, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting Solar Cell Heat-Up by Quantizing High Energy Carriers</atitle><jtitle>ISRN renewable energy</jtitle><date>2012-07-25</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2090-7451</issn><issn>2090-746X</issn><eissn>2090-746X</eissn><abstract>Under solar radiation the efficiency of solar cells decreases as a result of heating up by short wavelengths photons. To minimize loss of efficiency with increasing temperatures, we designed a heterostructure AlGaAs/AlGaAs/GaAs cascaded p-i-n solar cells with 30 Å wide quantum wells and 10 Å wide barriers in p and i regions. Our modeling demonstrated that quantizing high energy carriers in the superlattice prevents scattering of excessive electron energies, thus decreasing the temperature rise per unit of time by a factor of 2. The modeling based on continuity equations included integration of absorption coefficients for various wavelengths and summarizes all thermodynamic heat exchanges in the designed solar cell.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.5402/2012/862790</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5866-6089</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-7451 |
ispartof | ISRN renewable energy, 2012-07, Vol.2012 (2012), p.1-5 |
issn | 2090-7451 2090-746X 2090-746X |
language | eng |
recordid | cdi_crossref_primary_10_5402_2012_862790 |
source | EZB-FREE-00999 freely available EZB journals |
title | Limiting Solar Cell Heat-Up by Quantizing High Energy Carriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20Solar%20Cell%20Heat-Up%20by%20Quantizing%20High%20Energy%20Carriers&rft.jtitle=ISRN%20renewable%20energy&rft.au=Devarakonda,%20L.&rft.date=2012-07-25&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2090-7451&rft.eissn=2090-746X&rft_id=info:doi/10.5402/2012/862790&rft_dat=%3Cemarefa_cross%3E504314%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |