Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution

The purpose of this study is to introduce and demonstrate a fully automated process for optimizing the airfoil cross-section of a vertical-axis wind turbine (VAWT). The objective is to maximize the torque while enforcing typical wind turbine design constraints such as tip speed ratio, solidity, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN renewable energy 2014-01, Vol.2012 (2012), p.1-16
Hauptverfasser: Carrigan, Travis J., Dennis, Brian H., Han, Zhen X., Wang, Bo P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 2012
container_start_page 1
container_title ISRN renewable energy
container_volume 2012
creator Carrigan, Travis J.
Dennis, Brian H.
Han, Zhen X.
Wang, Bo P.
description The purpose of this study is to introduce and demonstrate a fully automated process for optimizing the airfoil cross-section of a vertical-axis wind turbine (VAWT). The objective is to maximize the torque while enforcing typical wind turbine design constraints such as tip speed ratio, solidity, and blade profile. By fixing the tip speed ratio of the wind turbine, there exists an airfoil cross-section and solidity for which the torque can be maximized, requiring the development of an iterative design system. The design system required to maximize torque incorporates rapid geometry generation and automated hybrid mesh generation tools with viscous, unsteady computational fluid dynamics (CFD) simulation software. The flexibility and automation of the modular design and simulation system allows for it to easily be coupled with a parallel differential evolution algorithm used to obtain an optimized blade design that maximizes the efficiency of the wind turbine.
doi_str_mv 10.5402/2012/528418
format Article
fullrecord <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5402_2012_528418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>478894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9130de2f6c485e0244e02913399874ebf0208ebe536f6ec4919878094ac662d13</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWGpPnoWclbVJNptNjqW2KhR6sFXBw5JmJzay3S3JVq2_3pSVXp3DzPD45sE8hC4puc04YUNGKBtmTHIqT1CPEUWSnIvX0-Oe0XM0COGDxBIsz1jeQ28j8E25r_XGGfy01lvA823rNu5Ht66pcWOxxs_gW2d0lYy-XcAvri7xYudXrga8DK5-x3fOWvBQt05XePLZVLvD8QU6s7oKMPibfbScThbjh2Q2v38cj2aJSVnaJoqmpARmheEyA8I4jy2KqVIy57CyhBEJK8hSYQUYrmjUJVFcGyFYSdM-uul8jW9C8GCLrXcb7fcFJcUhmuIQTdFFE-nrjl7HP_SX-we-6mCICFh9hHkupeLpL5kkbA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Carrigan, Travis J. ; Dennis, Brian H. ; Han, Zhen X. ; Wang, Bo P.</creator><contributor>Kalligeros, S. S. ; Senthilarasu, S.</contributor><creatorcontrib>Carrigan, Travis J. ; Dennis, Brian H. ; Han, Zhen X. ; Wang, Bo P. ; Kalligeros, S. S. ; Senthilarasu, S.</creatorcontrib><description>The purpose of this study is to introduce and demonstrate a fully automated process for optimizing the airfoil cross-section of a vertical-axis wind turbine (VAWT). The objective is to maximize the torque while enforcing typical wind turbine design constraints such as tip speed ratio, solidity, and blade profile. By fixing the tip speed ratio of the wind turbine, there exists an airfoil cross-section and solidity for which the torque can be maximized, requiring the development of an iterative design system. The design system required to maximize torque incorporates rapid geometry generation and automated hybrid mesh generation tools with viscous, unsteady computational fluid dynamics (CFD) simulation software. The flexibility and automation of the modular design and simulation system allows for it to easily be coupled with a parallel differential evolution algorithm used to obtain an optimized blade design that maximizes the efficiency of the wind turbine.</description><identifier>ISSN: 2090-7451</identifier><identifier>ISSN: 2090-746X</identifier><identifier>EISSN: 2090-746X</identifier><identifier>DOI: 10.5402/2012/528418</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>ISRN renewable energy, 2014-01, Vol.2012 (2012), p.1-16</ispartof><rights>Copyright © 2012 Travis J. Carrigan et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9130de2f6c485e0244e02913399874ebf0208ebe536f6ec4919878094ac662d13</citedby><cites>FETCH-LOGICAL-c323t-9130de2f6c485e0244e02913399874ebf0208ebe536f6ec4919878094ac662d13</cites><orcidid>0000-0001-9061-5153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Kalligeros, S. S.</contributor><contributor>Senthilarasu, S.</contributor><creatorcontrib>Carrigan, Travis J.</creatorcontrib><creatorcontrib>Dennis, Brian H.</creatorcontrib><creatorcontrib>Han, Zhen X.</creatorcontrib><creatorcontrib>Wang, Bo P.</creatorcontrib><title>Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution</title><title>ISRN renewable energy</title><description>The purpose of this study is to introduce and demonstrate a fully automated process for optimizing the airfoil cross-section of a vertical-axis wind turbine (VAWT). The objective is to maximize the torque while enforcing typical wind turbine design constraints such as tip speed ratio, solidity, and blade profile. By fixing the tip speed ratio of the wind turbine, there exists an airfoil cross-section and solidity for which the torque can be maximized, requiring the development of an iterative design system. The design system required to maximize torque incorporates rapid geometry generation and automated hybrid mesh generation tools with viscous, unsteady computational fluid dynamics (CFD) simulation software. The flexibility and automation of the modular design and simulation system allows for it to easily be coupled with a parallel differential evolution algorithm used to obtain an optimized blade design that maximizes the efficiency of the wind turbine.</description><issn>2090-7451</issn><issn>2090-746X</issn><issn>2090-746X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkEFLAzEQhYMoWGpPnoWclbVJNptNjqW2KhR6sFXBw5JmJzay3S3JVq2_3pSVXp3DzPD45sE8hC4puc04YUNGKBtmTHIqT1CPEUWSnIvX0-Oe0XM0COGDxBIsz1jeQ28j8E25r_XGGfy01lvA823rNu5Ht66pcWOxxs_gW2d0lYy-XcAvri7xYudXrga8DK5-x3fOWvBQt05XePLZVLvD8QU6s7oKMPibfbScThbjh2Q2v38cj2aJSVnaJoqmpARmheEyA8I4jy2KqVIy57CyhBEJK8hSYQUYrmjUJVFcGyFYSdM-uul8jW9C8GCLrXcb7fcFJcUhmuIQTdFFE-nrjl7HP_SX-we-6mCICFh9hHkupeLpL5kkbA4</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Carrigan, Travis J.</creator><creator>Dennis, Brian H.</creator><creator>Han, Zhen X.</creator><creator>Wang, Bo P.</creator><general>Hindawi Puplishing Corporation</general><general>International Scholarly Research Network</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9061-5153</orcidid></search><sort><creationdate>20140101</creationdate><title>Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution</title><author>Carrigan, Travis J. ; Dennis, Brian H. ; Han, Zhen X. ; Wang, Bo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9130de2f6c485e0244e02913399874ebf0208ebe536f6ec4919878094ac662d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrigan, Travis J.</creatorcontrib><creatorcontrib>Dennis, Brian H.</creatorcontrib><creatorcontrib>Han, Zhen X.</creatorcontrib><creatorcontrib>Wang, Bo P.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><jtitle>ISRN renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrigan, Travis J.</au><au>Dennis, Brian H.</au><au>Han, Zhen X.</au><au>Wang, Bo P.</au><au>Kalligeros, S. S.</au><au>Senthilarasu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution</atitle><jtitle>ISRN renewable energy</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>2090-7451</issn><issn>2090-746X</issn><eissn>2090-746X</eissn><abstract>The purpose of this study is to introduce and demonstrate a fully automated process for optimizing the airfoil cross-section of a vertical-axis wind turbine (VAWT). The objective is to maximize the torque while enforcing typical wind turbine design constraints such as tip speed ratio, solidity, and blade profile. By fixing the tip speed ratio of the wind turbine, there exists an airfoil cross-section and solidity for which the torque can be maximized, requiring the development of an iterative design system. The design system required to maximize torque incorporates rapid geometry generation and automated hybrid mesh generation tools with viscous, unsteady computational fluid dynamics (CFD) simulation software. The flexibility and automation of the modular design and simulation system allows for it to easily be coupled with a parallel differential evolution algorithm used to obtain an optimized blade design that maximizes the efficiency of the wind turbine.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.5402/2012/528418</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9061-5153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-7451
ispartof ISRN renewable energy, 2014-01, Vol.2012 (2012), p.1-16
issn 2090-7451
2090-746X
2090-746X
language eng
recordid cdi_crossref_primary_10_5402_2012_528418
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20Shape%20Optimization%20of%20a%20Vertical-Axis%20Wind%20Turbine%20Using%20Differential%20Evolution&rft.jtitle=ISRN%20renewable%20energy&rft.au=Carrigan,%20Travis%20J.&rft.date=2014-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=2090-7451&rft.eissn=2090-746X&rft_id=info:doi/10.5402/2012/528418&rft_dat=%3Cemarefa_cross%3E478894%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true