Trisections and link surgeries
We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $\#^j S^1 \times S^2$ and have surgeries yielding $\#^k S^1 \times S^2$. We describe families of links wh...
Gespeichert in:
Veröffentlicht in: | New Zealand journal of mathematics 2021-09, Vol.52, p.145-152 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | |
container_start_page | 145 |
container_title | New Zealand journal of mathematics |
container_volume | 52 |
creator | Kirby, Robion Thompson, Abigail |
description | We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $\#^j S^1 \times S^2$ and have surgeries yielding $\#^k S^1 \times S^2$. We describe families of links which have such surgeries. One can ask whether all links with such surgeries lie in these families; the answer is almost certainly no. We nevertheless give a small piece of evidence in favor of a positive answer. |
doi_str_mv | 10.53733/94 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_53733_94</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_53733_94</sourcerecordid><originalsourceid>FETCH-LOGICAL-c98t-ed5cb9d718181b6a9d7155f3edfb8467687bccffd4d9de03fc4f52a35831a803</originalsourceid><addsrcrecordid>eNpNj09rwjAYh8NQmNZ9hVHYuTPxTZrkOIqbQsGDvZc0f0ZmrSNvd9i3n1MP8hx-z-kHDyEZo68CJMBS8wcyY0zqgmvFJ3f-SOaIX5SWIDmbkecmRfR2jKcBczO4vI_DIcef9OlT9Lgg02B69E-3zcj-fd1Um6LefWyrt7qwWo2Fd8J22kmmznSl-VchAngXOsVLWSrZWRuC4047TyFYHsTKgFDAjKKQkZfrq00nxORD-53i0aTfltH2EtRqDn9_FjxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trisections and link surgeries</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Kirby, Robion ; Thompson, Abigail</creator><creatorcontrib>Kirby, Robion ; Thompson, Abigail</creatorcontrib><description>We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $\#^j S^1 \times S^2$ and have surgeries yielding $\#^k S^1 \times S^2$. We describe families of links which have such surgeries. One can ask whether all links with such surgeries lie in these families; the answer is almost certainly no. We nevertheless give a small piece of evidence in favor of a positive answer.</description><identifier>ISSN: 1179-4984</identifier><identifier>EISSN: 1179-4984</identifier><identifier>DOI: 10.53733/94</identifier><language>eng</language><ispartof>New Zealand journal of mathematics, 2021-09, Vol.52, p.145-152</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27915,27916</link.rule.ids></links><search><creatorcontrib>Kirby, Robion</creatorcontrib><creatorcontrib>Thompson, Abigail</creatorcontrib><title>Trisections and link surgeries</title><title>New Zealand journal of mathematics</title><description>We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $\#^j S^1 \times S^2$ and have surgeries yielding $\#^k S^1 \times S^2$. We describe families of links which have such surgeries. One can ask whether all links with such surgeries lie in these families; the answer is almost certainly no. We nevertheless give a small piece of evidence in favor of a positive answer.</description><issn>1179-4984</issn><issn>1179-4984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj09rwjAYh8NQmNZ9hVHYuTPxTZrkOIqbQsGDvZc0f0ZmrSNvd9i3n1MP8hx-z-kHDyEZo68CJMBS8wcyY0zqgmvFJ3f-SOaIX5SWIDmbkecmRfR2jKcBczO4vI_DIcef9OlT9Lgg02B69E-3zcj-fd1Um6LefWyrt7qwWo2Fd8J22kmmznSl-VchAngXOsVLWSrZWRuC4047TyFYHsTKgFDAjKKQkZfrq00nxORD-53i0aTfltH2EtRqDn9_FjxK</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>Kirby, Robion</creator><creator>Thompson, Abigail</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210919</creationdate><title>Trisections and link surgeries</title><author>Kirby, Robion ; Thompson, Abigail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c98t-ed5cb9d718181b6a9d7155f3edfb8467687bccffd4d9de03fc4f52a35831a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirby, Robion</creatorcontrib><creatorcontrib>Thompson, Abigail</creatorcontrib><collection>CrossRef</collection><jtitle>New Zealand journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirby, Robion</au><au>Thompson, Abigail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trisections and link surgeries</atitle><jtitle>New Zealand journal of mathematics</jtitle><date>2021-09-19</date><risdate>2021</risdate><volume>52</volume><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1179-4984</issn><eissn>1179-4984</eissn><abstract>We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $\#^j S^1 \times S^2$ and have surgeries yielding $\#^k S^1 \times S^2$. We describe families of links which have such surgeries. One can ask whether all links with such surgeries lie in these families; the answer is almost certainly no. We nevertheless give a small piece of evidence in favor of a positive answer.</abstract><doi>10.53733/94</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1179-4984 |
ispartof | New Zealand journal of mathematics, 2021-09, Vol.52, p.145-152 |
issn | 1179-4984 1179-4984 |
language | eng |
recordid | cdi_crossref_primary_10_53733_94 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals |
title | Trisections and link surgeries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trisections%20and%20link%20surgeries&rft.jtitle=New%20Zealand%20journal%20of%20mathematics&rft.au=Kirby,%20Robion&rft.date=2021-09-19&rft.volume=52&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1179-4984&rft.eissn=1179-4984&rft_id=info:doi/10.53733/94&rft_dat=%3Ccrossref%3E10_53733_94%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |